HIGH DENSITY POLYETHYLENE - HYDROXYAPATITE COMPOSITES SYNTHETIZED BY IN SITU ETHYLENE POLYMERIZATION

VANESSA HERMÁN*, ARQUIMEDES KARAM1, CARMEN ALBANO2, GEMA GONZÁLEZ3

1Centro de Química, Laboratorio de Polímeros, Instituto Venezolano de Investigaciones Científicas (IVIC). Caracas 1020, Venezuela. Email: vherman@ivic.gob.ve, akaram@ivic.gob.ve Phone: +58212-5041832

2 Universidad Central de Venezuela, Facultad de Ingeniería, Escuela de Ingeniería Química, Zip Code 1020, Caracas, Venezuela. Email: carmen.albano@ucv.ve

3 Centro Ing. Materiales y Nanotecnología, Laboratorio de Materiales, IVIC. Caracas 1020, Venezuela. Email: gemagonz@ivic.gob.ve Phone: +58212-5041430

*Corresponding author

Recibido: diciembre 2013 Recibido en forma final revisado: diciembre 2014

ABSTRACT

A novel synthesis method of obtaining polyethylene - hydroxyapatite (HDPE-HA) composites is proposed using in situ ethylene polymerization, employing Cp₂ZrCl₂/MAO as catalytic system. In this work, the influence of different polymerization conditions on the HA dispersion was evaluated. The parameters studied were: stirring velocity (600-2000 rpm) and temperature (10-75°C). It was found that, combining high stirring velocities (2000 rpm) and low temperatures (10 °C), it was possible to reach good filler dispersion with the HA nanocrystals interconnected in a network without the presence of agglomerates. Thermal degradation of HDPE-HA composites involved chemical degradation reaction of first order, accompanied by formation of the gas phase inside the melt polymer.

Keywords: Synthesis, polyethylene, Composites, Hydroxiapatite, Thermal degradation.

INTRODUCTION

High density polyethylene (HDPE) is a polyolefin that is widely used in diverse fields, including biomedicine, mainly due to its biointert characteristics (Billmeyer, 1984; Park, 2003). Nevertheless, its application in biomedicine has been restricted due to poor mechanical properties, such as low resistance (Billmeyer, 1984; Bonfield et al., 1981; Park, 2003; Wang et al., 1994; Tanner et al., 1994). To overcome these problems, HDPE has been used in composites, in which the polyolefin acts as a matrix, and different fillers have been incorporated to improve mechanical properties. Some of the fillers include silica (Woo et al., 1995, 1999) clays (Yano A et al., 1998), carbon nanotubes (Bonduel et al., 2005; Tong et al., 2004), and hydroxyapatite (HA) (Bonfield et al., 1981). The last one is a biocompatible inorganic salt that has been used in implant manufacture, because of its structural and physicochemical similarity with human bone (Bonfield, 1981; Park, 2003).

Diverse methods have been employed to obtain HDPE-HA composites, including chemical solutions and melt mixing. However, these methods did not succeed in obtaining a good dispersion of HA, resulting in agglomerates formation.
These agglomerates decrease the torsional and tensile modulus of the HDPE-HA composite produced, since filler-rich sites promote fracture (Unwin et al., 2001; Albano et al., 2006a and 2006b; Wang et al., 2002; Shahbazi et al., 2006; Zhang et al., 2008).

Recent studies have reported that using in situ polymerization gives better filler dispersion especially at higher filler contents than simple melt compounding. In situ polymerization of monomers in the presence of nanofillers is a promising approach for a more homogeneous distribution, due to the close contact of polymer and filler during synthesis (Kaminsky et al., 2006).

In situ ethylene polymerization using HA as filler has not been reported up to now, to the best of our knowledge. Due to the important potential applications of this composite and to the possible beneficial effects of nanohydroxyapatite in biomedical applications, in the present work the synthesis of HDPE-HA composites using in situ ethylene polymerization with Cp₂ZrCl₂/MAO as catalytic system was studied by varying different reactions parameters in order to improve HA dispersability into HDPE matrix.

EXPERIMENTAL TECHNIQUES

Materials

Calcium hydroxide and di-ammonium hydrogen phosphate were supplied by Fisher Chemicals. Ethylene 5.0 grade of purity (Boc Gases). Toluene (Riedel de Haën, p.a.). Cp₂ZrCl₂ (Sigma Aldrich). MAO with 12.77% aluminum (Akzo Chemicals).

Synthesis of HA

A wet chemical precipitation reaction was used to synthesize HA with equimolar solution of calcium hydroxide and di-ammonium hydrogen phosphate (Koutsopoulos, 2002). The resulting suspension was washed with de-ionized water and centrifuged several times until neutral pH was achieved. Afterwards, HA was dried at 80 °C for 48 h to remove water absorbed and then pulverized and sieved.

Synthesis of HDPE-HA composites

HDPE-HA composites were synthesized by in situ ethylene polymerization, previously dried toluene was used as solvent, (Aemarego, 2003) and Cp₂ZrCl₂/MAO as the catalytic system. All manipulations were carried out under nitrogen atmosphere using standard Schlenck techniques and dry box (Shiver, 1986). In situ ethylene polymerization was carried out at different stirring velocities (600-2000 rpm) and temperatures (10-75 °C), with a constant filler percentage (15 wt% ~ 0.8720 g). HA was suspended in toluene and transferred to a Büchi reactor by Schlenck techniques. After 10 min of stirring, toluene catalyst solution (1 µmol/ml) was transferred into the reactor. Polymerization was carried out at a constant ethylene pressure (1 bar) for 30 min. The reaction was quenched by addition of an acidic solution (10 % HCl in ethanol). The polymer obtained was washed several times with ethanol and dried in vacuum at 60 °C for 12 h.

Characterization of HA and HDPE-HA composites

Fourier transformed infrared spectroscopy (FTIR, Nicolet iS10) was used to determine characteristic functional groups of HA, using KBr and 64 scans. Transmission electron microscopy was carried out in a JEOL 1220, operating at 100 KeV to study morphology, size, and dispersion of HA nanoparticles into the polymeric matrix. Samples were prepared by suspension in water: ethanol (70:30).

Differential scanning calorimetric (DSC) analyses were carried out in a Mettler-Toledo DSC 822e. Samples (9 10 mg) were heated up to 170 °C and subsequently kept for about 3 min in order to erase the previous thermal history. This initial heating was performed at a rate of 20 °C/min. Then, the samples were cooled to room temperature and subsequently heated up to 170 °C both at a rate of 10 °C/min. The values of melting temperature (Tm), crystallization temperature (Tc), and crystallinity degree (χ) were determined from the thermograms of the cooling and second heating. Crystallinity degree was calculated using equation (1):

\[
χ_c(\%) = \frac{\Delta H_{m_{exp}}}{\Delta H_{m_{theo}}} \times 100
\]

where χ is the crystallinity degree, ΔHm_{exp} is the experimental melting enthalpy and ΔHm_{theo} corresponds to 100% of crystalline PE, 293 J/g (Bandrup, 1999).

Thermogravimetric analysis (TGA) was performed in order to elucidate the thermal stability of the synthesized composites. Samples (9-10 mg) were heated from room temperature up to 700 °C at 10 °C/min in a Mettler-Toledo TGA/STDA analyzer. Coats-Redfern kinetic model (Coats et al., 1964) was used to determine the reaction order (n) and E, Function model (Chen et al., 2004) to calculate kinetics parameters (Ea and A). The equation used for this calculation is the following:
\[\ln \left(\frac{G(\alpha)}{T} \right) = \ln \left(\frac{A R}{E_a \beta} \right) - \frac{E_a}{2.3RT} \]

(2)

where \(\alpha \) is the degree of conversion, \(G(\alpha) \) the integral conversion function (reaction mechanism), \(\beta \) the constant heating rate, \(T \) the temperature in Kelvin, \(R \) the universal gas constant, \(E_a \) the activation energy for the decomposition process and \(A \) the pre-exponential factor.

RESULTS AND DISCUSSION

Hydroxyapatite (HA) synthesis was extremely effective, resulting in a high yield (99%). Characterization by FTIR showed the characteristic HA functional groups bands: \(\text{OH}^- \) (3700 and 1600 cm\(^{-1}\)), \(\text{PO}_4^{3-} \) (1089-1035, 962, 603-565, and 477 cm\(^{-1}\)) (figure 1) (Rehman I \textit{et al.}, 1997). HA nanocrystals have needle-like morphology with an average length around \((AL) \) of \((55 \pm 9) \) nm and average diameter \((AD) \) of \((10 \pm 1) \) nm as can be seen in figure 2 (Koutsopoulos, 2002).

In order to standardize the polymerization reaction MAO, MAO/HA, and \(\text{Cp}_2\text{ZrCl}_2/MAO \) were tested on high density polyethylene production (HDPE). The ethylene polymerizations were carried out under the conditions presented on table 1 (entry 1-4). It was found that MAO or MAO/HA was not active on the ethylene polymerization. \(\text{Cp}_2\text{ZrCl}_2/MAO \) was active producing HDPE as expected (thermal properties presented on table 3 are similar to the theoretical thermal properties previously reported) (Bandrup \textit{et al.}, 1999). The HDPE mass obtained was used as reference to calculate the equivalent mass of 15 wt% HA, that was employed in the synthesis of HDPE-HA composites. HA effect on the catalytic activity was studied (reaction 3 versus 4, table 1) it can be observed that HDPE production was not affected by the incorporation of the filler into polymerization medium. In general, it has been reported that supports that contain hydroxyl surface groups (i.e. zeolites, clays, others) show a decay in the catalytic activity due to block of active sites for polymerization (Hlatky, 2000). In the particular case of HA, a few OH groups are at the surface (Koutsopoulos, 2002), therefore, that the catalytic would decay, however, this effect was not observed in these experiments. Once it was confirm that HA has no negative effect on catalytic activity and polymer production, then the influence of stirring velocity and temperature on the filler dispersion was evaluated.

The stirring velocity was evaluated at first from 600 to 2000 rpm (table 1, entry 4-7). As can be seen at 2000 rpm (table 1, entry 7) the amount of polymer obtained was almost twice the amount when 600 rpm was used (table 1, entry 4). This is attributed to a better dispersion of the catalyst in the reaction medium at higher stirring velocities and also to a better dispersion of the synthesized polymer (Quijada \textit{et al.}, 1998).

TEM images of HDPE-HA composites obtained at different stirring velocities are shown in figure 3. At higher stirring velocities (1500 and 2000 rpm) formation of HA agglomerates were obtained. This could be a consequence of the higher amount of polymer formed impeding a good dispersion of the filler. To corroborate these observations several measures of different images were carried out, obtaining the following AA sizes: \((273 \pm 41) \) nm for 1500 rpm and \((345 \pm 43) \) nm for 2000 rpm. When the synthesis was carried out at lower stirring velocities (600 rpm) few agglomerates can be observed presenting an AA of \((110 \pm 17) \) nm. The best HA dispersion was obtained at 1000 rpm with the lowest AA size of \((100 \pm 10) \) nm, this result indicated that at room temperature the better dispersion is achieved when intermediate stirring velocities are used.
Table 1. HDPE-HA composites synthesis.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Polymerization conditions</th>
<th>CA* [gPE/mmol Zr.h.bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MAO</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>MAO/HA</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Cp₂ZrCl₂/MAO</td>
<td>950</td>
</tr>
<tr>
<td>4</td>
<td>Cp₂ZrCl₂/MAO/HA</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>Stirring velocities (rpm) (25 °C)</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1500</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>8</td>
<td>Temperatures (°C) (1000 rpm)</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>11</td>
<td>2000 rpm, 10 °C</td>
<td></td>
</tr>
</tbody>
</table>

Reaction conditions: 3 mg Cp₂ZrCl₂, 15 % HA, 1 bar, 30 min, [Al]/[Zr] = 500, 100 mL toluene. Entry 1 and 3: Without HA. Entry 2, 4 to 11: With 15% of HA.

* Catalytic activity. All polymerizations were carried out two or three times to obtain an error lower that 10%.

The effect of temperature (10 -75 °C) was evaluated at 1000 rpm because under this stirring velocity the best HA nanocrystals dispersion was achieved. No significant differences on the catalytic activity were obtained at 10 and 25 °C (entry 8-9). However, when the synthesis was carried out at 75 °C, an increase of approximately 20 % on HDPE production was obtained. This increasing reaction rate with temperature is caused by the increased molecular collisions frequency, as a consequence olefin molecules travels faster and react more often with the active site, which is stable under these polymerization conditions. Similar results have been reported in the synthesis on high density polyethylene-carbon nanotube composites (Bonduel et al., 2007; Kao, 2006; Quijada et al., 1998; Kaminsky et al., 2006).

HA nanocrystals dispersion was studied by TEM images (figure 4). Composites synthetized at 10 and 25 °C did not present significant differences in AA sizes (107 ± 10 nm and 100 ± 10nm, respectively). However, at 10 °C it was found a better dispersion being possible to differentiate each single HA nanocrystal. Meanwhile, small agglomerates were observed at 25 °C. When the temperature was raised to 75 °C there was an increase in the formation agglomerates. This could be a consequence of the higher amount of polymer formed impeding a good dispersion of the filler. In the TEM image it was observed how the HA nanocrystals are embedded into the polymeric matrix.

In order to produce higher amount of HDPE and maintain the polymer/filler ratio, HDPE-HA composites were synthetized at 2000 rpm and 10 °C (table 1, entry 11). Combining high stirring velocities and low temperatures HDPE production was increased on a 60% with respect to entry 5 and 8 (table 1). A synergistic effect of these two reactions parameters seems to be present, resulting in the best filler dispersion throughout these studies, with HA nanocrystals interconnected in a network without formation of agglomerates (figure 5). Therefore it can be conclude that
in situ ethylene polymerization is an alternative synthesis method for the synthesis of HDPE-HA composites, and the different parameters studied showed that it is possible to obtain optimum conditions able to accomplish a good dispersion, compared to the other synthesis methodologies previously reported (Albano et al., 2006c; Wang et al., 1998; Roeder et al., 2003; Zhang et al., 2003).

Additionally, the thermal behavior of HDPE-HA composites was studied by TGA. It was found that HA incorporation into the polymeric matrix did not have a significant effect on polyethylene thermal properties, such as crystallization temperature, melting temperature, or crystalline percentage (table 2) (Albano et al., 2006a, 2006b; Minkova et al., 1993). However, in some cases there are some significant changes in this thermal properties, it has been reported that this kind of behavior could be attributed to a change in polymer molecular weight, that can be due to the differences synthesis conditions (Cossee et al., 1964; Chien et al., 1993).

Also, a slightly change (0.2-3.7) % of the initial decomposition temperatures of HDPE-HA compounds with respect to the polymerization of ethylene without filler was observed. The activation energy (Ea) of the polymer and each composite was calculated using E_2 Function model (table 2), the results obtained presented an increased on this parameter when HA was added into the polymeric matrix, this could indicate that although HA does not change the thermal properties produced an improvement on the thermal stability of the composites, slowing down the degradation processes of the HDPE (Bikiaris, 2011; Chrissafisa et al., 2011; Hermán et al., 2013).

As it is known, polymers degradation is a very complex phenomenon, consequently, the degradation process are represented by a set of functions and not for a single function. Although the E_2 Function model allowed obtaining Ea value using the heating rate, the proper kinetic model must be chosen employing a model fitting method. The best reaction mechanism will be that which best fits equation (Eq. 2). In this article, fourteen mechanisms functions were evaluated(Budrugeac et al., 2001; Mamleev et al., 2000). The best fit obtained for all samples was the nth order reaction mechanism with n = 1. The models with the second and third best fits were nucleation and nucleus growth with n = 1/2 and 1/3, respectively. In general, the thermal degradation of polymeric composites is a heterogeneous process ruled by more than one mechanism. Therefore, thermal degradation of HDPE-HA composites evaluated in the present work, can be describe as a physicochemical phenomenon that involves chemical degradation reaction of first order, accompanied by formation of the gas phase inside the melt polymer and by nucleation and nucleus growth kinetics of degraded species in a heterogeneous medium (Budrugeac et al., 2001; Hermán et al., 2013; Mamleev et al., 2000).
Table 2. Thermal properties of HDPE-HA composites

<table>
<thead>
<tr>
<th>Entry</th>
<th>T_c (± 1) [°C]</th>
<th>T_m (± 1) [°C]</th>
<th>χ [%]</th>
<th>T_{id} (± 1) [°C]</th>
<th>E_a [KJ/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>109</td>
<td>135</td>
<td>59</td>
<td>460</td>
<td>350</td>
</tr>
<tr>
<td>4</td>
<td>108</td>
<td>135</td>
<td>51</td>
<td>461</td>
<td>416</td>
</tr>
<tr>
<td>5</td>
<td>108</td>
<td>135</td>
<td>53</td>
<td>457</td>
<td>430</td>
</tr>
<tr>
<td>6</td>
<td>108</td>
<td>134</td>
<td>54</td>
<td>447</td>
<td>448</td>
</tr>
<tr>
<td>7</td>
<td>109</td>
<td>135</td>
<td>59</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>8</td>
<td>109</td>
<td>136</td>
<td>50</td>
<td>443</td>
<td>460</td>
</tr>
<tr>
<td>9</td>
<td>108</td>
<td>135</td>
<td>53</td>
<td>458</td>
<td>466</td>
</tr>
<tr>
<td>10</td>
<td>113</td>
<td>133</td>
<td>69</td>
<td>458</td>
<td>456</td>
</tr>
<tr>
<td>11</td>
<td>108</td>
<td>136</td>
<td>61</td>
<td>457</td>
<td>460</td>
</tr>
</tbody>
</table>

Entry 1 and 2 are not in the table because in these syntheses conditions polyethylene was not obtained.

CONCLUSIONS

In situ ethylene polymerization is an alternative synthesis method for the synthesis of HDPE-HA composites, combining high stirring velocities (2000 rpm) and low temperatures (10 °C) was possible to reach good dispersion of HA nanocrystals interconnected in a network without the presence of agglomerates.

A possible interaction between the filler and the polymer is proposed due to a significant displacement of HA functional groups observed in FTIR spectra. Thermal properties of HDPE-HA did not change significantly compared to HDPE alone. Activation energy increased with HA incorporation, indicating that HA improves the thermal stability of the composites. Thermal degradation of HDPE-HA composites involved chemical degradation reaction of first order, accompanied by formation of the gas phase inside the melt polymer.

The use of in situ ethylene polymerization for synthetized these composites can be interesting to improve mechanical properties for biomedical applications; these properties are under current investigations.

ABBREVIATIONS

CA: Catalytic activity
Cp₂ZrCl₂: Bis-(cyclopentadienyl) zirconium dichloride
HA: Hydroxyapatite
HDPE: High density polyethylene
FTIR: Fourier transforms infrared spectroscopy
MAO: Metylaluminoxane
T_c: Crystallization temperature
TEM: Transmission electron microscopy
T_m: Melting temperature
T_{id}: Initial decomposition temperature
XRD: X-ray diffraction

REFERENCES

