Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Paradígma
versión impresa ISSN 1011-2251
Paradígma v.26 n.2 Maracay dic. 2005
Dominio afectivo en educación matemática
Oswaldo Jesús Martínez Padrón
Profesor de Matemática, Magister en Educación Superior: Matemática. Candidato a Doctor en Ciencias de la Educación (UPEL) Profesor Titular adscrito al Departamento de Ciencia y Tecnología de la UPEL-El Mácaro Coordinador de la Línea de Investigación Dominio Afectivo en Educación Matemática (LI-DAEM) con adscripción a la UPEL-El Mácaro y al Núcleo de Investigación en Educación Matemática Dr. Emilio Medina (NIEM) de la UPEL-Maracay e-mail: ommadail@cantv.net; ommadail@hotmail.com; omartinez@iprm.upel.edu.ve
Resumen
El presente trabajo aborda una serie de aspectos relacionados con el dominio afectivo en la educación matemática y se desarrolla a luz de la definición de Encuentro Edumático y sobre la base de las repercusiones que tienen factores tales como las creencias, las emociones y las actitudes hacia la matemática, su enseñanza, su aprendizaje o su evaluación, haciendo hincapié en aquellos que son reportados como desfavorables para el desarrollo exitoso de las clases de Matemática. En tal sentido, está sustentado en aspectos tales como la impopularidad de la Matemática y la aversión sentida por muchos de los que deben aprenderla, sin excluir las dificultades que presentan algunos docentes que tienen la responsabilidad de enseñarla en las aulas de clase.
Palabras Claves: Educación Matemática, Dominio Afectivo, Encuentros Edumáticos
Abstract
The present work approaches a series of aspects related to the affective domain in the mathematical education and it is developed to light of the definition of Edumático Encounter and on the base of the repercussions that have factors such as the beliefs, the emotions and the attitudes towards the mathematical, their teaching, its learning or its evaluation, insisting on which is reported like unfavourable for the successful development of the classes of Mathematical. In such sense, it is sustained in aspects such as the unpopularity of Mathematical and the aversion felt by many of which they must learn it, without excluding the difficulties that present some educational ones that has the responsibility to teach it in the class classrooms. (sujeto a revisión)
Key Words: Mathematical Education, Affective Domain, Edumatico Encounter
Recibido: 09/07/2005 Aceptado: 26/10/2005
Introducción
El papel que juega la Matemática en la sociedad actual continúa siendo de vital importancia, tanto para el mundo de los negocios, el arte, la ciencia y la tecnología como para la resolución problemas y la toma de decisiones en la vida cotidiana. No obstante, cuando esta área del saber es abordada en las aulas de clase donde es enseñada, el panorama resulta casi siempre desalentador debido a que hay quienes creen que ella es misteriosa, aburrida, compleja, no digerible por todos y resulta difícil de aprenderla. Quizás éstas sean algunas de las razones por las que suele gustar a un reducido grupo de estudiantes, tiende a ser aborrecida u odiada por quienes no la entienden generando, en consecuencia, frustración, angustia y aversión casi colectiva, en vez de satisfacciones por los logros obtenidos (Martínez Padrón, 2003).
La situación suele agravarse, aún más, cuando se evalúan los contenidos matemáticos aprendidos en las aulas. En general, estos resultados son reportados como deficientes y generan gran preocupación en todos los actores involucrados en el proceso. Hay quienes señalan, por ejemplo, que el nivel de aprendizaje matemático de los estudiantes es cada vez más bajo (Andradas, 2000) y como asignatura existe resistencia para aprenderla y es considerada como un obstáculo para lograr una promoción o una admisión en instituciones educativas (Ojeda, Medina y Peralta, 2001).
Como puede observarse, lo que se piensa sobre la naturaleza de la Matemática, la manera de usarla, cómo enseñarla, cómo y para qué se aprende, cómo se evalúa y cuánto es útil para la sociedad está ligado a una serie de factores del dominio afectivo tales como concepciones, creencias, motivaciones, convicciones, opiniones, sentimientos, emociones y actitudes que tienen los estudiantes y los docentes hacia dicha ciencia o hacia los procesos ya mencionados.
Sobre la base de lo planteado se materializó este artículo que pretende presentar una breve panorámica general sustentada, en casi todo su contenido, en algunas secciones de una investigación documental desarrollada por este autor (Martínez Padrón, 2003) en torno al binomio dominio afectivo-educación matemática en la cual especificó una serie de aspectos teórico-referenciales que se concretaron a la luz de los Encuentros Edumáticos cuya definición, según González (2000), comprende aquellas situaciones sociales donde los docentes, junto con su grupo de estudiantes, se comprometen en un proceso de adquisición de conocimientos y producción de saberes en relación con la Matemática (p. 117).
Como se observa, la definición de Encuentro Edumático obliga a la consideración de unos protagonistas en situación de enseñanza-aprendizaje-evaluación que puede analizarse en función de un sistema didáctico conformado tanto por el docente, los estudiantes y los saberes matemáticos allí involucrados, como por el contexto que delimita el ámbito de relevancia o de elementos que hay que tomar en cuenta al momento de describir, analizar, comprender, interpretar o explicar los comportamientos y las acciones que se dan entre los sujetos comprometidos en dichos Encuentros.
En consecuencia, este artículo se caracteriza por contener concreciones, esquemas, contrastaciones, resúmenes, análisis críticos, planteamientos, aseveraciones y otros referentes orientadores y concernientes a los procesos de enseñanza, de aprendizaje y de evaluación de los aprendizajes matemáticos, y sus protagonistas, en relación con una gama de factores del dominio afectivo que han venido siendo considerados en variadas investigaciones realizadas en relación con el tema.
De manera particular, se inicia con una sección que hace referencia a la impopularidad que, por muchos años, ha estado ligada a la Matemática. Posteriormente, muestra una breve caracterización aquellos factores básicos que definen el dominio afectivo tales como las creencias, las emociones y las actitudes, concretando, luego, sus conexiones con la educación matemática. En vista de la existencia de sostenidos referentes que apuntan hacia la necesidad de disminuir o eliminar niveles desfavorables de frustración, rechazo o miedo, que repercuten en el desarrollo exitoso de los Encuentros Edumáticos; estas secciones presentan consideraciones que deberían tomarse en cuenta al momento de concretar espacios investigativos de acción sobre la problemática existente en el campo de la Educación Matemática. De allí que en el cierre de este estudio se destacan algunos de ellos y se plantean otros bajo la intención de ser considerados en la necesaria mejora del proceso de enseñanza-aprendizaje-evaluación de la Matemática, sobre la base de la consideración de factores del dominio afectivo. Ello supone un compromiso insoslayable que no puede postergarse si se quieren concretar los cambios requeridos en muchas propuestas curriculares donde el afecto tiene espacios importantes.
La Impopularidad de la Matemática
Como se sabe, la Matemática ha estado presente en casi todos los quehaceres de la humanidad y, según Galileo (citado en Barrow, 1997), es el lenguaje en el que parece estar escrito el libro de la naturaleza (p. 11). Quizá por ello resulte difícil encontrar fenómeno alguno capaz de escapar de su poder descriptivo.
Como área de estudio, la Matemática ha sido considerada como el fundamento formal de la mayoría de las disciplinas de todas las épocas, estando presente en muchas de las estructuras curriculares que perfilan la formación académica tanto de niños, adolescentes y adultos. Sin embargo, existen investigaciones donde la reportan como la menos popular de estos planes de estudio (Bayley, 1979; Godino, 1993; Madail, 1998, Martínez Padrón, 2003).
Las razones de la impopularidad atribuidas a la Matemática son variadas y no fáciles de inventariar, pero, sin duda, han contribuido a desfavorecer tanto su aprendizaje como su enseñanza. Por ejemplo, la aversión hacia la Matemática, expresada en la tendencia a alejarse de ella, o en la repulsión o el rechazo experimentado por los estudiantes hacia ella, sustenta actitudes adversas hacia su aprendizaje, es decir, actitudes desfavorables o contrarias que obstaculizan el logro de aprendizajes matemáticos. Godino (1993) considera que ello puede deberse a la creencia de que la Matemática es "difícil, fría, ultra-racional y fuertemente masculina (p. 6). Pero, también es posible que esta impopularidad tenga sus sustentos en la dificultad que muchos tienen para comprenderla, en el aún sostenido rigor que caracteriza su manera de enseñarla y en la manera de proceder de muchos docentes que suelen infundir temor, incluso, hasta para controlar la participación de los estudiantes y el orden de la clase.
Sin embargo, a pesar de esta realidad, siempre se han aspirado cambios importantes que apuntan hacia la disminución de esta impopularidad, sobre todo si se consideran los nuevos aportes de investigaciones que, en las últimas dos décadas, se han venido realizando en relación con el afecto y la educación matemática. Autores tales como Ernest (1989), Ponte (1994; 1999), Ponte, Berger, Cannizaro, Contreras y Sufuanov (1999), Gómez Chacón (2000), Gómez (2001) y Martínez Padrón (2003) dan fe de ello y han reportando importantes insumos en torno a esta relación, dejando ver que la impopularidad de la Matemática responde tanto a aspectos cognitivos como afectivos.
Esta impopularidad de la Matemática muchas veces está ligada con rendimientos académicos bajos y estos, a su vez, con el fracaso escolar de los estudiantes (Martínez Padrón, 2003) que, según Mora Penagos (2002), puede tener explicaciones psicológicas, sociales, económicas y culturales. Este último autor apunta que entre los principales factores directamente relacionados con dicho fracaso están los métodos de enseñanza desarrollados cotidianamente en nuestras instituciones escolares en correspondencia con la visión que se tiene sobre la Matemática escolar. En consecuencia, el fracaso mencionado pudiera estar conectado con las creencias y concepciones que tienen los docentes al momento de organizar y desarrollar las actividades previstas en los encuentros edumáticos.
Ponte, Berger, Cannizaro, Contreras y Sufuanov (1999) indican que las creencias de los profesores sobre la Matemática influyen en los contenidos a ser movilizados en el aula, en los objetivos perseguidos y en la selección de las actividades de aprendizaje. También enfatizan que ellas dependen del objetivo específico que se aborda en el momento de desarrollar la clase y del contexto, entre otros factores. Respecto a las creencias sobre el aprendizaje de los estudiantes, señalan que las mismas parecen estar intrincadas en los esquemas personales de los docentes y son originadas de la propia experiencia.
Gómez Chacón (2000) agrega que el fracaso escolar de los estudiantes no siempre se corresponde con su desarrollo cognitivo, indicando que las emociones juegan un papel facilitador, o debilitador, del aprendizaje de la Matemática. En este sentido manifiesta que cuando un estudiante aprende Matemática recibe continuos estímulos asociados con la Matemática que le generan cierta tensión [y] ante ellos reacciona emocionalmente (p. 26). Tales reacciones están condicionadas por sus creencias acerca de sí mismo y acerca de la Matemática y pueden ser automatizadas y solidificadas en actitudes y emociones que influyen en dichas creencias y contribuyen con su formación. También declara que los afectos hacia la Matemática se constituyen en un sistema que regula la estructura del conocimiento matemático de los estudiantes logrando que algunos muestren mayor adicción y gusto hacia dicha asignatura que otros no más inteligentes que ellos.
Estos y otros factores del dominio afectivo que son capaces de generar satisfacción, frustración, alegría, gusto, repugnancia, apego, incertidumbre, miedo, desánimo, resistencia o preocupación en quienes protagonizan la clase de Matemática repercuten en la popularidad de la Matemática y, por ende, en su aprendizaje.
El Dominio Afectivo
Cuando se enseña o se aprende Matemática existen muchos factores que delinean el afecto que se produce hacia esta área del saber o hacia los procesos ligados a ella. Estos factores son variados, están fuertemente arraigados en los sujetos, son responsables de muchas de las acciones y comportamientos ante objetos involucrados en dicho proceso y definen un dominio que incluye, según Bloom y colaboradores (1977), apreciaciones, preferencias, creencias, emociones, actitudes, valores y sentimientos, y según Lafortune y Saint-Pierre (citado en Gómez Chacón, 2000) actitudes, valores, comportamiento moral y ético, emociones, sentimientos, atribuciones, motivación y desarrollo personal y social.
McLeod (citado en Gómez Chacón, 2000) se inclina por incluir las creencias, las emociones y las actitudes como factores básicos de este dominio, el cual lo define como un extenso rango de sentimientos y humores (estados de ánimo) que son generalmente considerados como algo diferente de la pura cognición (p. 22).
Como puede observarse anteriormente, son muchos los factores que podrían definir el dominio afectivo de los sujetos y mientras mayor sea el número considerado, mayor sería la complejidad de su estudio y sus repercusiones en la educación matemática. En correspondencia con la acepción de McLeod, se puede admitir que las creencias, las emociones y las actitudes serán los factores considerados como los componentes básicos del dominio afectivo.
Las Creencias
Para Munby (citado en Porlán, 1996), las creencias son puntos de vista que actúan como supuestos obvios. Destaca que el sujeto no siempre está consciente de tener algunas creencias y por ello habla de creencias implícitas que, si no se consideran, no tendrían sentido algunas acciones de los sujetos para hacer lo que hacen. Desde el punto de vista sociológico, Reyes, Salcedo y Perafán (1999) las conciben como todo aquello que en una sociedad es considerado por los sujetos como conocimiento, sin detenerse a pensar sobre su validez (p. 8). También las señalan como un grado de conocimiento significativo para quienes las poseen, así como los conocimientos son un grado de creencia válido en los contextos donde se predican dichos conocimientos.
Ponte (1999) indica que las creencias ponen de manifiesto objetos que se consideran verdades en un ámbito específico. Contreras (1998) y Gil (2000) también las reportan como verdades personales indiscutibles llevadas por cada sujeto, indicando que se derivan de su experiencia o de su fantasía. Al igual que Gómez Chacón (2000), agregan que tienen un fuerte componente afectivo.
Ponte (1999) acota que cuando se hace referencia a las creencias es posible encontrar otros constructos elaborados con intenciones similares. Entre ellos se encuentran términos tales como: filosofías personales, cosmovisiones, teorías personales, representaciones personales, visiones, perspectivas, imágenes, identidad y esquemas.
En todo caso, se puede decir que las creencias constituyen una base para el conocimiento y son concebidas como un referente cognitivo que sirve de soporte lógico y psicológico para condicionar, de alguna manera, lo afectivo de los sujetos y los predispone a actuar según ello. Son consideradas como verdades personales, representan construcciones que el sujeto realiza en su proceso de formación para entender su mundo, su naturaleza o su funcionamiento, juegan un papel preponderante tanto en la generación de comportamientos y acciones específicas como en la mediación para la comprensión de los mismos y se presentan en diferentes grados de convicción (Martínez Padrón, 2003)
Las Emociones
En algunas investigaciones recientes se encuentra que variados aspectos que tienen que ver con el afecto surgen de respuestas emocionales (Gómez Chacón, 1997). Igual aseveración es planteada por Goleman (1996), quien últimamente ha realizado importantes estudios sobre la inteligencia emocional, al expresar que gran parte de lo que hacen los sujetos puede ser dirigido emocionalmente, agregando a ello que la mente emocional es mucho más rápida que la racional y eso acarrea, en consecuencia, muchos riesgos.
De acuerdo con lo planteado, se hace necesario darle mayor relevancia al estudio de las emociones, particularmente cuando se conoce de la existencia de habilidades emocionales que tienen relación directa con el aprendizaje de los sujetos.
Las emociones son conceptualizadas como un "fenómeno de tipo afectivo que va acompañado de conmoción orgánica característica" (Lexus, 1997, p. 221). Estas expresiones emocionales características que acompañan a la vivencia del sujeto, pueden observarse directamente por ser alteraciones de tipo fisiológico tales como sudoración, respiración atípica y enrojecimiento facial. Según Goleman (1996), cuando un sujeto se emociona es posible que palidezca o se torne de piel rojiza debido a que la sangre fluye y existen cambios en el ritmo cardíaco.
Cuando Goleman hace referencia a la inteligencia emocional menciona una serie de habilidades tales como la autoconciencia, la autorregulación, el control de impulsos, la motivación, la perseverancia y la ansiedad que en muchos casos pueden ser responsables del éxito o del fracaso escolar de los estudiantes. Agrega que la emoción es como cualquier agitación y trastorno de la mente, el sentimiento, la pasión, cualquier estado mental vehemente o excitado (p. 331) y la considera como un sentimiento asociado con, entre otros: (a) pensamientos, (b) estados psicológicos y biológicos, y (c) tendencias de actuar.
Para Gómez Chacón (2000), las emociones son respuestas organizadas más allá de la frontera de los sistemas psicológicos, incluyendo lo fisiológico, cognitivo, motivacional y el sistema experiencial. Surgen en respuesta a un suceso, interno o externo, que tiene una carga de significado para el sujeto (p. 25). González (1997) señala que cuando dichas emociones son experimentadas por el sujeto son capaces de inhibirlo o estimularlo ante dicho proceso.
Además, las emociones se asocian con la ira, el odio, la tristeza, el temor, el placer, el amor, la sorpresa, el enojo, el miedo, la frustración, el desagrado, el disgusto o la vergüenza, por lo que se estaría hablando de emociones cuando, por ejemplo, en la clase de Matemática los estudiantes se exasperan o muestran nerviosismo, fobia, pánico o placer por dicha clase.
Se ha dicho que este tipo de reacciones emocionales tiene especial relevancia en el aprendizaje. Al respecto, Velazco Bernal (citado en Olguín, s.f.) señala, por ejemplo, que la ira y el miedo, en sus manifestaciones extremas, pueden obstaculizar las habilidades intelectuales y, por ende, la capacidad de aprender. Pero si estas reacciones se presentan en intensidades moderadas, ellas pueden resultar promotoras para el aprendizaje. Respecto a la alegría indica que la misma predispone a afrontar cualquier tarea, por lo que aumenta la energía disponible, inhibe los sentimientos negativos, proporciona reposo, entusiasmo y disposición a la acción de potenciar aprendizajes, caso contrario ocurre con la tristeza. En todo caso, las emociones son impulsos que, en esencia, conducen la actuación de los sujetos sobre la base de una programación de reacción automática.
Haciendo caracterizaciones más precisas, Olguín plantea que las emociones están conformadas por un sistema de tres (3) componentes:
-
El perceptivo: destinado a la detección de estímulos. Incluye elementos hereditarios y también fruto de las experiencias del sujeto.
-
El motivacional: encargado de impulsar, mantener y dirigir la conducta de los sujetos hacia determinados objetos.
-
El conductual: depende de tres manifestaciones: (a) la reacción fisiológica perceptible, (b) los pensamientos, y (c) la conducta manifiesta.
De manera que cuando un sujeto siente fobia hacia los exámenes de Matemática o placer por haber obtenido una excelente calificación en ellos, puede representar un caso relacionado con el primer componente; el miedo que pudiera tener hacia la Matemática como impulso para no estudiarla sería una situación referida al segundo componente, mientras que si ese sujeto desarrolla estrategias de evitación de las situaciones de presentación de pruebas de Matemática se estaría ante un caso del tercer componente en el momento que se observe, por ejemplo, la presencia de sudoración cuando piensa y decide eludir la presentación de una prueba de Matemática.
Conjugando estos referentes caracterizadores de las emociones, se puede concretar que ellas se corresponden con un fenómeno de tipo afectivo que un sujeto emite en respuesta a un suceso, interno o externo, que tiene para él una carga de significado. Estas reacciones psico-físicas, de carácter momentáneo, suelen estar acompañadas de expresiones orgánicas características asociadas con pensamientos, motivaciones, experiencias, elementos hereditarios, cogniciones, estados psicológicos y biológicos y tendencias de actuar.
Haciendo conexión con las creencias, Gómez Chacón (2000) manifiesta que éstas derivan el significado de los actos emocionales que los estudiantes exhiben cuando se les enseña o cuando aprenden. En este sentido, las creencias y las emociones constituyen factores relevantes al momento de desarrollarse procesos que tienen que ver con la enseñanza y el aprendizaje de los educandos, sobre todo cuando se sabe que muchos de los éxitos, o de los fracasos, escolares no siempre dependen de las capacidades cognitivas de los sujetos sino del uso inteligente de las emociones.
La última expresión hace que se retome lo referido a la inteligencia emocional en el sentido de destacar sobre la necesidad de considerar la misma, en forma intencional, en pro de mejoras en los resultados que puedan obtenerse en el ámbito de la educación matemática. Ello perfila variadas áreas de búsquedas que pueden concretarse, por ejemplo, al momento de observarse lo que acontece en los Encuentros Edumáticos. Así, la posibilidad de delimitar habilidades para reconocer sentimientos y emociones, y lidiar con ellos, puede representar un referente eficaz y productivo que debe tomarse en cuenta al momento de analizar procesos de enseñanza, de aprendizaje y de evaluación de la Matemática que trasciendan lo meramente cognitivo.
Aunque en las últimas dos décadas es cuando se han venido concretando, con gran relevancia, estudios que aborden el campo de las emociones y sus repercusiones en la educación matemática, tal como el presentado por Gómez Chacón (1997; 2000), no hay que olvidar que Polya (1965) en su texto denominado Cómo plantear y resolver problemas venía advirtiendo que la solución de un problema de Matemática es cuestión de voluntad y que la determinación (que varía según la esperanza o el abatimiento y la satisfacción o la desilusión) y las emociones juegan un papel importante en su resolución, por lo que sería un error creer que la solución de un problema es un asunto puramente intelectual (p. 80).
Las Actitudes
Gairín (1990) señala que las actitudes son instancias que predisponen y dirigen al sujeto sobre hechos de la realidad, filtran las percepciones y orientan el pensamiento para adaptarlo al contexto. Katz (citado en Clemente, 1995), también las considera como predisposiciones de valoración que son emitidas por el sujeto. Para Clemente, son sentimientos positivos o negativos que están asociados con algún objeto psicológico que conduce al sujeto a actuar y expresarse según ellos, es decir, en cada uno de sus actos y opiniones. Al igual que Bloom y colaboradores (1977) y Gómez (1998b), este último autor cita a Rokeach quien las define como una organización de creencias focalizadas en un objeto o situación particular capaz de predisponer al sujeto que la experimenta a la emisión de respuestas preferenciales. Krech y Crutchfield (citados en Sarabia, 1992), indican que son organizaciones duraderas "de procesos motivacionales, emocionales, perceptuales y cognitivos con respecto a algún aspecto del mundo del individuo" (p. 135). De acuerdo con esto último, se tiene que si lo motivacional no está presente, no tiene sentido hablar de actitud, por lo que este componente motivacional implica la presencia de los componentes afectivos y comportamentales.
Otra definición de actitud es la reportada por García de Clemente (1982) y Gómez (1998b) quienes, apoyados en Aiken, la conciben como un estado mental y neural cuya organización depende de la experiencia, destacando que ejerce una influencia directa y dinámica sobre las respuestas que emiten los sujetos hacia los objetos o situaciones en los que está relacionado.
Resumiendo lo planteado hasta ahora y complementando con otros autores, se puede decir que las actitudes vienen a ser predisposiciones comportamentales u orientaciones afectivas que un sujeto adquiere y que acompaña con una reacción valorativa o evaluativa manifiesta a través del agrado o desagrado hacia algún objeto o situación, es decir, se constituyen en una predisposición o juicio valorativo o evaluativo, favorable o desfavorable, que determina las intenciones personales de los sujetos y es capaz de influirlos en sus comportamientos frente al objeto (Gairín, 1990: Sarabia, 1992; Robbins, 1994; Bolívar, 1995; Gómez Chacón, 2000).
La manifestación de las actitudes de los sujetos ante el objeto puede darse, entre otros, a través de ideas, percepciones, gustos, preferencias, opiniones, creencias, emociones, sentimientos, tendencia a actuar o comportamientos. Sobre la base de estas maneras de manifestación o de expresión se precisan, entonces, cuatro (4) componentes o dimensiones actitudinales que, conjugando lo aportado por Gallego Badillo (2000) y lo que señalan Cembranos y Gallego (1988), Sarabia (1992), Robbins (1994), Bolívar (1995), Gómez (1998b) y Gómez Chacón (2000), se estructuran de la siguiente manera:
1. Componente Cognoscitivo (el saber): este componente tiene la carga de la información y la experiencia adquirida por el sujeto respecto al objeto de su actitud y que son manifestadas o expresadas a través de sus percepciones, ideas, opiniones y creencias a partir de las cuales el sujeto se coloca a favor o en contra de la conducta esperada. La predisposición a actuar de manera preferencial hacia el objeto, persona o situación está sujeta a este componente.
2. Componente Afectivo (el sentir): este componente pone de manifiesto a través de las emociones y los sentimientos individuales de aceptación, o rechazo, que se activan motivacionalmente ante la presencia del objeto, persona o situación que genera dicha actitud. También se remite al valor que el sujeto le atribuye ellos.
3. Componente Conativo o Intencional (las intenciones): es expresado por los sujetos mediante su inclinación voluntaria de realizar una acción. Está constituido por predisposiciones, predilecciones, preferencias, tendencias o intenciones de actuar de una forma específica ante el objeto, según las orientaciones de las normas o de las reglas que existan al respecto. La tendencia a actuar, favorable o desfavorable, se pone de manifiesto a través de las acciones del sujeto ante el objeto de su actitud.
4. Componente Comportamental (el comportamiento): se constituye en la conducta observable, propiamente dicha, la cual, según Postic y De Ketele (1992), será concebida como un conjunto de comportamientos.
Considerando que las actitudes son el resultado de un aprendizaje cultural, es decir, no son innatas, y que las mismas difieren en función del ambiente donde el sujeto las aprende, se hace necesario considerar el proceso interaccional y particular de cada contexto que incide significativamente en su construcción (Gallego Badillo, 2000). Este mismo autor asevera que los sujetos construyen ciertas y determinadas actitudes hacia un saber específico con miras a desempeñar el papel que mejor le posibilita vivir exitosamente en su comunidad (p. 24). En este caso, la comunidad donde está insertado el sujeto también ha sido objeto de otras interacciones que pueden reportar información incidente.
Respecto a las características de las actitudes se puede resumir que ellas: (a) no son innatas en el sujeto, sino aprendidas, (b) son relativamente estables, (c) implican relación con algo o alguien, (d) pueden referirse a una o varias cosas, a una o varias personas, (e) actúan como fuerte motivador de la conducta y pueden constituirse en la única motivación para emprender las acciones, (f) tienen gran importancia social debido a que son compartidas por muchas personas, (g) se pueden expresar a través del lenguaje-verbal o no verbal, (h) son transmisibles, (i) implican evaluación de la cosa y juicios evaluativos (Sarabia, 1992; Cembranos y Gallego, 1988; Gallego Badillo, 2000).
A sabiendas de no haber agotado la discusión sobre todos los factores que forman parte del dominio afectivo, se cierra esta sección con la presentación del Gráfico 1 que resume la conexión entre los factores básicos mas relevantes de ese dominio.
Gráfico 1. Factores básicos que componen el dominio afectivo. Tomado de El dominio afectivo en la educación matemática: aspectos teórico-referenciales a la luz de los encuentros edumáticos, por O. Martínez Padrón, 2003, p. 66
El Dominio Afectivo en la Educación Matemática
La consideración de los variados factores que configuran el dominio afectivo en la educación matemática ha tenido tanta relevancia que últimamente ha sido considerado como clave para la descripción, el análisis, la comprensión o la explicación de muchas situaciones que suceden en el aula de Matemática. Ello se evidencia cuando se revisan investigaciones realizadas por autores tales como Ponte (1994; 1999) y Gómez Chacón (2000) quienes reportan información relevante en relación con factores del dominio afectivo tales como las creencias, las concepciones, las emociones y las actitudes y su repercusión en los procesos de enseñanza, aprendizaje y evaluación de los aprendizajes matemáticos.
En relación con el aprendizaje de la Matemática, Gómez Chacón (2000) manifiesta que entre éste y los factores del dominio afectivo existe una relación cíclica sustentada en lo siguiente:
1. Cuando un estudiante aprende Matemática obtiene alguna experiencia que le puede provocar reacciones que influyen en la formación de sus creencias acerca de la Matemática y acerca de sí mismo en relación con la Matemática. Las creencias del sujeto sobre la Matemática pueden afectar su comportamiento y sus acciones en situaciones de aprendizaje y en su capacidad de aprender Matemática.
2. Es posible generar tensión en aquellos estudiantes que aprenden Matemática, a través de ciertos estímulos asociados con dicha área del saber, provocando reacciones emocionales condicionadas por sus creencias acerca de si mismo o acerca de la Matemática.
3. Las reacciones emocionales en sujetos expuestos repetidamente a situaciones similares pueden automatizarse y convertirse en actitudes que contribuyen en la formación y mantenimiento de creencias.
Esta misma autora plantea otras consideraciones de interés que permiten mencionar otras conexiones. Éstas son:
1. Los comportamientos y las acciones de los estudiantes que participan en las experiencias de aprendizaje organizadas en el aula de clase de Matemática se ven afectados por las creencias de sus docentes, de sus compañeros, de sus padres o representantes y por las de otros actores de la comunidad que lo circunda.
2. Los factores del dominio afectivo pueden constituirse en indicadores que permitan estimar tipos de enseñanza recibidas y experiencias de aprendizaje.
3. Los factores del dominio afectivo pueden actuar como impulsores de la actividad Matemática.
Con estas breves consideraciones es notoria la interconexión que existe entre la educación matemática y factores del dominio afectivo tales como las emociones, las concepciones, las creencias y las actitudes hacia la Matemática, sobre todo cuando se hace referencia al fracaso escolar. Autores tales como Nunes, Carraher y Schiemann (1982), Clemente (1995), Gómez (1998a) y Madail (1998) reportan que la satisfacción, frustración, alegría, gusto, repugnancia, apego, incertidumbre, miedo, aversión, desánimo, resistencia o preocupación presente en muchas situaciones relacionadas con la Matemática repercuten en el éxito, o en el fracaso, escolar de los protagonistas de la clase de Matemática. Según Nunes, Carraher y Schiemann (1982), el fracaso escolar, que pudiera verse como el fracaso de los estudiantes, de la clase o del sistema social, económico y político, también es visto desde el extremo del fracaso de la escuela que se plantea sobre la base de reconocer que existen docentes que no sólo muestran incapacidad para evaluar las capacidades reales de sus estudiantes, sino que presentan desconocimiento de los procesos naturales que permiten adquirir conocimientos e incapacidad de establecer un puente que permita conectar el conocimiento formal y el práctico que ya poseen los estudiantes. En el caso de estos últimos, Gómez Chacón (2000) agrega que este fracaso depende, muchas veces, de su desarrollo cognitivo, pero también depende, y con gran relevancia, del papel que juegan las emociones durante el proceso de adquisición de conocimientos y producción de saberes matemáticos.
Pero la responsabilidad que tienen los docentes en el fracaso de sus estudiantes es también notoria ya que se han encontrado investigaciones donde se reportan situaciones que deben ser revisadas al momento en que se esté interesado en mejorar lo que acontece en lo que para este estudio está definido como Encuentro Edumático. A saber, existen docentes que enseñan Matemática que:
1. Poseen una débil formación profesional que no les permite abordar, con éxito, sus compromisos profesionales señalando, incluso, que en sus procesos de formación no se les crean espacios donde vivan experiencias que generen conflictos entre sus visiones como profesionales y las realidades a las que tienen que enfrentarse (Gómez, 1998a)
2. Tienen problemas de conocimiento matemático que se evidencian cuando cometen errores similares a los de sus estudiantes, así como también exhiben deficiencias para gestionar, con éxito, los problemas que presentan sus estudiantes en el aula, al no tener suficientes recursos cognitivos para responderles (Contreras, 2002)
3. Pueden mantener diferentes posiciones en relación con cada contexto particular donde se desarrollan los Encuentros Edumáticos. Esto conduce a considerar creencias locales y concepciones en diferentes áreas del currículo matemático escolar. Si estas posturas, están intrincadas en sus esquemas personales, son originadas de la propia experiencia y pueden ser atribuidas a lo social, a lo ético y a los valores filosóficos de cada país, región, cultura o grupo, entonces, según Ponte y otros (1999), pueden afectar los contenidos a ser movilizados en la clase de matemática, los objetivos allí perseguidos y la selección de las actividades de aprendizaje.
4. Tienen puntos de vista que podrían hacer que sus alumnos terminen pensando de acuerdo con sus directrices. Según ello, la filosofía personal, y también la institucional, acerca de la Matemática condiciona, en forma decisiva, su manera de enseñarla y se refleja en cómo los alumnos la aprenden o son evaluados. Si a eso se le agrega lo que Bishop (1988) sostiene en cuanto a que cada grupo cultural desarrolla su propia Matemática y reconoce la existencia de diferentes Matemáticas que están a tono con la cultura de cada sociedad entonces hay que reexaminar los currículos escolares de muchos países, regiones o Universidades que forman a los docentes, particularmente en aquellos grupos sociales considerados como minoritarios.
A Manera de Cierre
A lo largo de todo este estudio se puede advertir que lo referido al dominio afectivo y su repercusión en la educación matemática se constituye en un campo de accionar investigativo que, actualmente, tiene mucha relevancia, sobre todo cuando se quiere describir, analizar, interpretar, explicar o comprender para transformar tanto lo que hacen los docentes como sus estudiantes en relación con la Matemática que se aprende, que se enseña o que se evalúa. Quizás por ello autores tales como Ernest (1989), Contreras (1998), Ponte y otros (1999) y Gómez Chacón (2000) indican que si se quieren lograr cambios importantes en el ámbito de la educación matemática es necesario considerar factores tales como las creencias, las concepciones, las emociones y las actitudes de los actores protagonistas de las clases de Matemática.
Tales consideraciones se deben a muchas razones, entre las que se destacan las siguientes:
1. En la formación de los docentes se involucran variados factores interconectados en la problemática de la educación matemática que exigen que los mismos posean un conocimiento profesional que, según Gómez, Valero, Perry y Castro (1998), no sólo verse sobre Matemática sino sobre su didáctica, planteando la necesidad de considerar, además, sus concepciones y sus creencias respecto a la naturaleza de la Matemática, su enseñanza y su aprendizaje por ser, junto con sus conocimientos, las bases que sustentan sus decisiones en el aula.
2. Lo que piensan, hacen o dicen tanto los actores involucrados con los Encuentros Edumáticos, como los otros miembros de la comunidad extra-escolar, muchas veces está delineado por factores del dominio afectivo. Se destaca que las actitudes, consideradas como reacciones valorativas que pueden estar configuradas en función de factores tales como creencias, concepciones, opiniones, sentimientos o emociones, tienen gran importancia social debido a que son compartidas por muchas personas que forman parte de la comunidad escolar y extraescolar (Martínez Padrón, 2003).
3. El aprendizaje de los sujetos que interactúan en los Encuentros Edumáticos puede estar influenciado por el aprendizaje de los demás, por el contexto y por el entorno inmediato, participando en ello variados factores del dominio afectivo que delinean, y son delineados, por los comportamientos y por las acciones expresadas o manifiestas durante el desarrollo de dichos encuentros (Martínez Padrón, 2003)
4. Las creencias constituyen conocimientos subjetivos que pueden condicionar reacciones emocionales sujetas a automatizarse y convertirse en actitudes que contribuyen al mantenimiento de estas creencias o a la formación de otras.
5. Hay quienes reportan que, en muchos casos, lo que se aprende durante el desarrollo de la clase de Matemática es a aborrecer u odiar la Matemática (Contreras, 2002; Martínez Padrón, 2003) que se les pretende enseñar debido a muchos factores negativos que están apoyados en creencias, concepciones, emociones o actitudes que tienen los sujetos hacia esta área del saber o hacia procesos concomitantes a ella.
6. Muchos estudiantes poseen creencias, emociones y actitudes hacia la Matemática que desfavorecen su aprendizaje. Algunas investigaciones reportan que entre los que estudian para ser docentes de Matemática se han encontrado evidencias que indican que su formación en el área puede considerarse como deficiente y su visión, acerca de la Matemática escolar y del proceso de enseñanza-aprendizaje-evaluación no es siempre compatible con las nuevas exigencias curriculares (Martínez Padrón, 2003).
7. Las concepciones y creencias que tienen los estudiantes, respecto a la Matemática, su aprendizaje e, incluso, sobre como son enseñados y evaluados dependen, en gran medida, de los mensajes que reciben de los docentes, los cuales son elaborados desde la base de las concepciones que están ligadas al conocimiento profesional de dichos docentes (Contreras, 1998).
Finalmente, se puede concluir que el hecho de que el número de investigaciones realizadas al respecto se haya incrementado en las tres últimas décadas ha permitido contar con variados referentes teórico-referenciales en torno el binomio dominio afectivo-educación matemática, a la luz de variados contextos, que pueden servir para concretar acciones inmediatas y mancomunadas cuyo norte sea el de mejorar lo que acontece en los Encuentros Edumáticos, sobre todo cuando en ellos se toman en cuenta las creencias, concepciones, sentimientos, emociones, actitudes y otros factores del dominio afectivo que subyacen en los comportamientos y las acciones de los sujetos que protagonizan dichos encuentros. A saber, cuando se enseña, se aprende o se evalúa un aprendizaje matemático en un determinado contexto de allí emergen variadas y complejas situaciones cargadas de significados que son producto de las relaciones que se dan entre los estudiantes, su docente y el saber matemático enseñado que deben ser consideradas cuando se quiere cambiar una realidad donde el fracaso en las aulas de Matemática ha estado presente a lo largo de muchos años. Ello requiere de una participación comprometida e insoslayable de todos quienes sientan y saben que las transformaciones que son necesarias en esos escenarios no se dan por decreto. ¿Acaso no es preocupante saber que en la dinámica que se produce en los Encuentros Edumáticos existen estudiantes que manifiestan actitudes de rechazo hacia la Matemática por el hecho de creer que ella es una asignatura difícil y compleja? Si a ello se le agrega la angustia que puede producirles el hecho de enfrentarse a un docente que, por tradición, no siempre los involucra en la producción de conocimientos matemáticos ni toma en cuenta sus saberes previos, entonces, ¿esta concepción de enseñanza y de aprendizaje es propicia para lograr esos cambios deseados? La reflexión al respecto es impostergable.
Referencias
1. Andradas, C. (2000). Mesa redonda sobre enseñanza de las matemáticas. Algunas reflexiones. [Documento en línea]. Disponible: http://ochoa.mat.ucm.es/~guzman/00edumatuniv /carlosandradas.htm [Consulta: 2002, Septiembre 07] [ Links ]
2. Barrow, J. (1997). ¿Por qué el mundo es matemático? (J. García, Trad.).España: Editorial Grijalbo Mondadori. (Trabajo original publicado en 1992) [ Links ]
3. Bayley, Z. (1979). Los objetivos afectivos y la formación de actitudes hacia la Matemática. Trabajo no publicado. Caracas: CENAMEC. [ Links ]
4. Bishop, A. (1988). Aspectos sociales y culturales de la educación matemática (E. Vidal, Trad.). En Enseñanza de las Ciencias 6(2), 121-125. Conferencia invitada en el II Congreso Internacional sobre Investigación en la Didáctica de las Ciencias y las Matemáticas, Valencia, España. [ Links ]
5. Bloom, B. y colaboradores (1977). Taxonomía de los objetivos de la educación. La clasificación de las metas educacionales (M. Pérez Rivas, Trad.). Buenos Aires: Editorial El Ateneo. [ Links ]
6. Bolívar, A. (1995). La evaluación de valores y actitudes. Madrid: Grupo Anaya, S.A.. [ Links ]
7. Cembranos, M. y Gallego, M. (1988). La escuela y sus posibilidades en la formación de actitudes para la convivencia. Madrid: Narcea, S. A. De Ediciones [ Links ]
8. Clemente, J. (1995). Construcción de una escala de actitudes hacia la Matemática. Educación y Ciencias Humanas, 3(4), pp. 165-189. Caracas. [ Links ]
9. Contreras, L. (1998). Resolución de problemas. Un análisis exploratorio de las concepciones de los profesores acerca de su papel en el aula, [Documento en línea]. Tesis doctoral no publicada, Universidad de Huelva, España. Disponible: http://www2.uhu.es/luis.contreras/Tesistexto.htm [Consulta: 2002, Septiembre, 21]. [ Links ]
10. Contreras, L. (2002). Dificultades y obstáculos para el cambio en el aula. Una perspectiva desde la educación matemática [Documento en línea]. Disponible: http://www2.uhu.es/luis. contreras/Novedades/articulo02.htm [Consulta: 2002, Septiembre 11] [ Links ]
11. Ernest, P. (1989). The impact of beliefs on the teaching of mathematics, [Documento en línea]. Disponible: http://www.ex.ac.uk/~PErnest/impactr.htm [Consulta: 2002, Septiembre 11]. [ Links ]
12. Gairín, J. (1990). Las actitudes en educación. Un estudio sobre educación matemática. España: Editorial Boixareu Universitaria. [ Links ]
13. Gallego Badillo, R. (2000). Los problemas de las competencias cognoscitivas. Una discusión necesaria. Santafé de Bogotá, Colombia: Universidad Pedagógica Nacional. [ Links ]
14. García de Clemente, C. (1982). The relationship of three instructional approaches to the attitude and achievement in mathematics of prospective elementary school teachers in Venezuela. Disertación doctoral. Boston University [ Links ]
15. Gil, F. (2000). Marco conceptual y creencias de los profesores sobre evaluación en matemáticas. España: Servicio de Publicaciones de la Universidad de Almeria [ Links ]
16. Godino, J. D. (1993). La metáfora ecológica en el estudio de la noosfera matemática [Documento en línea]. Disponible: http://www.ugr.es/~jgodino/semioesp/ecologes.htm [Consulta: 2000, Septiembre, 09] [ Links ]
17. Goleman, D. (1996). La inteligencia emocional, (E. Mateo, Trad.). España: Javier Vergara Editor (Trabajo original publicado en 1995) [ Links ]
18. Gómez Chacón, I.. (1997). La alfabetización emocional en educación matemática: actitudes, emociones y creencias. Uno: Revista de Didáctica de las Matemáticas, 13(4). España: Editorial Graó [ Links ]
19. Gómez Chacón, I. (2000). Matemática emocional. Los afectos en el aprendizaje matemático. España: Narcea, S.A., Ediciones. [ Links ]
20. Gómez, P. (1998a). La cultura de la escritura en los profesores de matemáticas. Su papel en la innovación y en la formación de profesores. [Documento en línea]. Ponencia presentada en el III Congreso Iberoamericano de Educación Matemática, Caracas. Disponible: http://ued.uniandes.edu.co(servidor/em/recinf /reportes/CIMEM3/CIBEM3-PG.html [Consulta: 1998, Agosto, 21]. [ Links ]
21. Gómez, P. (1998b). Calculadoras gráficas y precálculo. Las actitudes de los estudiantes [Documento en línea]. Disponible: http://ued.edu.co/servidor/ued/libros/libroaportes.htm [Consulta: 1998, Octubre 12] [ Links ]
22. Gómez, P. (2001). Desarrollo didáctico de los futuros profesores de matemáticas: el caso de la estructura conceptual y los sistemas de representación, En Moreno, F., Socas, M. y J. D. Godino (Eds), Documentos de trabajo del V Simposio de la Sociedad Española de Investigación en Educación Matemática (SEIEM), Almeria, Septiembre 2001. [ Links ]
23. Gómez, P., Valero, P., Perry, P. y Castro, M. (1998). Los profesores de matemáticas como investigadores. La Problemática de la formación permanente. [Documento en línea]. Ponencia presentada en el III Congreso Iberoamericano de Educación Matemática, Caracas. Disponible: http://ued.uniandes.edu.co(servidor/em/recinf/reportes/CIMEM3/CIBEM3-PG.html [Consulta: 1998, Agosto, 21]. [ Links ]
24. González, F. E. (1997). Procesos cognitivos y metacognitivos que activan los estudiantes universitarios venezolanos cuando resuelven problemas matemáticos. Tesis de doctorado no publicada, Universidad de Carabobo, Valencia. [ Links ]
25. González, F. E. (2000). Agenda latinoamericana de investigación en educación matemática para el siglo XXI. Educación Matemática, 12(1), pp. 107-128. México: Grupo Editorial Iberoamérica, S.A., de C.V. [ Links ]
26. Lexus (1997). Enciclopedia de pedagogía y psicología. España: Ediciones Trébol, S. L. [ Links ]
27. Madail, A. (1998). Actitud hacia la matemática y rendimiento en matemática. Trabajo especial de grado de especialización no publicado. Universidad Santa María, Maracay. [ Links ]
28. Martínez Padrón, O. (2003). El dominio afectivo en la educación matemática: Aspectos teórico-referenciales a la luz de los encuentros edumáticos. Trabajo de Ascenso no publicado. Universidad Pedagógica Experimental Libertador, Instituto Pedagógico Rural El Mácaro, Turmero [ Links ]
29. Mora Penagos, W. (2002). Modelos de enseñanza-aprendizaje y desarrollo profesional: elementos para la cualificación docente [Documento en línea]. Disponible: http:/atenea.udistrital.edu.co /grupos/redevac/htlm/r_biblio.htm. [Consulta: 2002, Agosto 04]. [ Links ]
30. Nunes, T, Carraher, D. W. y Schiemann, A. (1982). Diez en la vida; cero en la escuela. (Trabajo no publicado). Universidad de Pernambuco, Brasil. [ Links ]
31. Ojeda, B., Medina, B. y Peralta, D. (2001). Matemáticas, poderosa herramienta [Documento en línea]. Disponible: http://www.unidad094.upn.mx/42/mate.htm. [Consulta: 2002, Septiembre 11] [ Links ]
32. Olguin, J. (s. f.). Inteligencia emocional [Documento en línea]. Disponible: http://www.geocities.com/olguin_jorge/ inteligenciaemocional.htm. [Consulta: 2003, Julio 20] [ Links ]
33. Polya, G. (1965). Cómo plantear y resolver problemas (J. Zagazagoitía, Trad). México: Editorial Trillas. [ Links ]
34. Ponte, J. (1994). Knowledge, beliefs, and conceptions in mathematics teaching and learning [Documento en línea]. Disponible: http://www.educ.fc.pt/docentes/jponte/ind_uk.htm [Consulta: 2002, Septiembre, 25]. [ Links ]
35. Ponte, J. (1999). 2.1. Introduction. Teachers´ beliefs and conceptions as a fundamental topic on teacher education. En K. Krainer y F. Goffree (Eds.), On research in teacher education: From a study of teaching practices to issues in teacher education, First Conference of the European Society for Research in Mathematics Education (CERME 1), Osnabrück, Germany, Agosto, 1998, [Libro en línea], 43-50, Germany: Forschungsintitut für Mathematikdidaktik, Disponible: http:www.educ.fc.pt/docentes/jponte/ind_uk.htm [Consulta: 2002, Septiembre, 07]. [ Links ]
36. Ponte, J., Berger, P., Cannizaro, L., Contreras, L. y Sufuanov, I. (1999). Research on teachers´ beliefs: empirical work and methodological challenges. En K. Krainer y F. Goffree (Eds.), On research in teacher education: From a study of teaching practices to issues in teacher education. First Conference of the European Society for Research in Mathematics Education (CERME 1), Osnabrück, Germany, Agosto, 1998, [Libro en línea]. (pp. 79-98). Germany: Forschungsintitut für Mathematikdidaktik, Disponible: http:www.educ.fc.pt/ docentes/jponte/ind_uk.htm [Consulta: 2002, Septiembre, 20]. [ Links ]
37. Porlán, R. (1996). Cambiar la escuela. Buenos Aires: Editorial Magisterio del Río de la Plata. [ Links ]
38. Postic, M. y De Ketele J. M. (1992). Observar situaciones educativas (J. García García, Trad.). Madrid: Narcea, S. A., Ediciones. [ Links ]
39. Reyes, L., Salcedo, L. y Perafán, G. (1999). Acciones y creencias. Tesoro oculto del educador. Bogotá: Universidad Pedagógica Nacional. [ Links ]
40. Robbins, S. (1994) Comportamiento organizacional. Conceptos, controversias y aplicaciones. (S. P. Mascaro, Trad.). México: Editorial Prentice Hall Hispanoamericana S. A. (Trabajo original publicado en 1993). [ Links ]
41. Sarabia, B. (1992). El aprendizaje y la enseñanza de las actitudes. España: Aula XXI. Grupo Santillana de Ediciones, S.A. [ Links ]