Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista Técnica de la Facultad de Ingeniería Universidad del Zulia
versión impresa ISSN 0254-0770
Rev. Téc. Ing. Univ. Zulia v.33 n.2 Maracaibo ago. 2010
On transformations involving generalized basic hypergeometric function of two variables*
R.K. Yadav1, S.D. Purohit2, V.K. Vyas1
1Department of Mathematics and Statistics, J. N. Vyas University. Jodhpur-342005, India.
rkmdyadav@gmail.com, vyas.vijay01@rediffmail.com.
2Department of Basic Science (Mathematics), College of Technology and Engineering,
M.P University of Agriculture and Technology. Udaipur, India. sunil_a_purohit@yahoo.com
Abstract
In the present paper, transformations for basic analogue of the Foxs H-function of one and two variables have been derived by the application of the q-Leibniz rule for the product of two basic functions. Some special cases involving a basic analogue of Meijers G-function are also derived.
Key words: Fractional q-derivative operator, q-Leibniz rule, basic analogue of Foxs H-function and basic Meijers G-function.
Transformaciones de la función hipergeométrica básica generalizada de dos variables
Resumen
En el presente trabajo han sido derivadas transformaciones para la análoga básica de la función H de Fox de una y dos variables, aplicando la regla de Leibniz-q para el producto de dos funciones básicas. Algunos casos especiales que incluyen una análoga básica de la función G de Meijer son también derivados.
Palabras clave: Operador derivada-q fraccional, regla de Leibniz-q, análoga básica de la función H de Fox y la función G de Meijer básca.
Recibido el 27 de Julio de 2009
En forma revisada el 12 de Abril de 2010
* 2010: Mathematics Subject Classification: Primary 33D60, secondary 26A33.
1. Introduction
Recently in a couple of papers Yadav and Purohit [1, 2] have used the q-Leibniz rule for the fractional q-derivatives of the product of various basic hypergeometric function full stop. This has resulted in deduction of several transformations and expansion formulae involving the basic hypergeometric functions. Earlier Denis [3] and Shukla [4] have used the q-Leibniz rule to derive certain transformations for basic hypergeometric functions.
Recently Yadav et al. [5] have investigated the fractional q-calculus operators involving the basic analogue of Foxs H-function and basic analogue of Meijers G-function of two variables.
Motivated by the aforementioned work, we investigate the applications of the q-Leibniz rule to a product involving the basic analogue of Foxs H-function of two variables. This shall further be used to derive transformations involving the above mentioned functions.
The fractional q-differential operator of arbitrary order µ, cf. Al-Salam [6], is defined as:
, (1)
2. Transformations involving a basic analogue of Foxs H-function of two variables
In this section, we shall establish certain theorems involving some transformations associated with the basic analogue of the Foxs H-function and Meijers G-function of two variables.
The q-extension of the H-function of two variables defined by (10) in terms of the Mellin-Barnes type of basic contour integrals, possess the advantage that a number of q-special functions (including Foxs H-function of one variable) happen to be the particular cases of this function. The transformations deduced in the previous section can find many applications giving rise to the transformations for various q-special functions, which are special cases of the Foxs H-function.
Acknowledgement
The authors are thankful to the referees for their valuable comments, which have helped in improvement of the paper
References
1. Yadav, R.K. and Purohit, S.D.: Fractional q-derivatives and certain basic hypergeometric transformations. South-East Asian J. Math. & Math. Sc., 2(2) (2004), 37-46.
2. Yadav, R.K. and Purohit, S.D.: On fractional q-derivatives and transformations of the generalized basic hypergeometric function. J. Indian Acad. Math., 2 (2006), 321-326. [ Links ]
3. Denis, R.Y.: On certain special transformations of poly-basic hypergeometric functions. The Math. Student, 51(1-4) (1983), 121-125. [ Links ]
4. Shukla, H. L.: Certain results involving basic hypergeometric functions and fractional q-derivative. The Math. Student, 61(1-4) (1992), 107-112. [ Links ]
5. Yadav, R.K., Purohit, S.D. and Vyas, V.K.: On fractional q-calculus operators involving the basic hypergeometric function of two variables. Raj. Acad. Phy. Sci. 9(2) (2010), (In press). [ Links ]
6. Al-Salam, W.A.: Some fractional q-integral and q-derivatives. Proc. Edin. Math. Soc., 15 (1966), 135-140. [ Links ]
7. Gasper, G. and Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge, 1990. [ Links ]
8. Agarwal, R.P.: Fractional q-derivatives and q-integral and certain hypergeometric transformations. Ganita, 27 (1976), 25-32. [ Links ]
9. Saxena, R.K., Modi, G.C. and Kalla, S.L.: A basic analogue of H-function of two variables. Rev. Tec. Ing. Univ. Zulia, 10(2) (1987), 35-39. [ Links ]
10. Saxena, R.K., Modi, G.C. and Kalla, S.L.: A basic analogue of Foxs H-function. Rev. Tec. Ing. Univ. Zulia, 6 (1983), 139-143. [ Links ]