SciELO - Scientific Electronic Library Online

 
vol.64 número1Evidencia de la efectividad del uso de aparatología ortopédica prequirúrgica en pacientes con labio y paladar hendido: revisión sistemática.Primera década de la revista Investigación Clínica en la “Web”. índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Investigación Clínica

versión impresa ISSN 0535-5133versión On-line ISSN 2477-9393

Invest. clín vol.64 no.1 Maracaibo mar. 2023  Epub 28-Ago-2023

https://doi.org/10.54817/ic.v64n1a08 

Revisiones

Neurological manifestations associated with SARS-CoV-2 infection: an updated review.

Manifestaciones neurológicas asociadas con la infección por SARS-CoV-2: una revisión actualizada.

Diana Cevallos-Macías1 
http://orcid.org/0000-0002-3532-5935

Gilberto Vizcaíno Salazar1  2 
http://orcid.org/0000-0003-2785-1879

Aline Siteneski1  2 
http://orcid.org/0000-0001-6692-7253

1Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Técnica de Manabí, Portoviejo, Ecuador.

2Instituto de Investigación y Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador.


Abstract

SARS-CoV-2 is a single-stranded RNA virus that belongs to the group of seven coronaviruses that affect humans, and its infection causes the COVID-19 disease. The association between the COVID-19 condition and risk factors of neurological manifestations is unclear to date. This review aims to update the main neurological manifestations associated with SARS-CoV-2 disease. First, we present the hypothesis of the neuroinvasion mechanisms of SARS-CoV-2. Then, we discuss the possible symptoms related to patients with COVID-19 infection in the central and peripheral nervous systems, followed by the perspectives of diagnosis and treatment of possible neurological manifestations. The hypothesis of the neuroinvasion mechanism includes direct routes, as the virus crosses the blood-brain barrier or the ACE2 receptor pathway role, and indirect pathways, such as malfunctions of the immune system and vascular system dysregulation. Various studies report COVID-19 consequences, such as neuroanatomic alterations and cognitive impairment, besides peripheral conditions, such as anosmia, ageusia, and Guillain Barré Syndrome. However, the heterogeneity of the studies about neurologic damage in patients after COVID-19 infection precludes any generalization of current findings. Finally, new studies are necessary to understand the adequate diagnosis, therapeutic method of early treatment, and risk group of patients for neurological manifestations of COVID-19 post-infection.

Keywords: Neurological manifestations; neuroinvasive mechanism; COVID-19; SARS-CoV-2

Resumen

El SARS-CoV-2 es un virus de ARN monocatenario que pertenece al grupo de los siete coronavirus que afectan a los humanos y cuya infección causa la enfermedad COVID-19. La asociación entre la infección por COVID-19 y factores de riesgo de manifestaciones neurológicas aún no está clara. Esta revisión tiene como objetivo actualizar la descripción de las principales manifestaciones neurológicas asociadas a la infección por SARS-CoV-2. Presentamos la hipótesis de los mecanismos de neuroinvasión del SARS-CoV-2. Luego discutimos los posibles síntomas asociados a los pacientes con infección por COVID-19 en el sistema nervioso central y periférico y, posteriormente, las perspectivas de diagnóstico y tratamiento de las posibles manifestaciones neurológicas. La hipótesis del mecanismo de neuroinvasión incluye rutas directas cuando el virus cruza la barrera hematoencefálica o tiene acción vía del receptor ACE2 y vías indirectas tales como el mal funcionamiento del sistema inmunitario y la desregulación del sistema vascular. Diversos estudios reportan consecuencias del COVID-19, como la presencia de alteraciones neuroanatómicas y deterioro cognitivo, además de condiciones periféricas como anosmia, ageusia y Síndrome de Guillain Barré. La heterogeneidad de los estudios sobre el daño neurológico en pacientes después de la infección por COVID-19 impide cualquier generalización de los hallazgos actuales. Finalmente, son necesarios nuevos estudios enfocándose en comprender el diagnóstico adecuado, el método terapéutico de tratamiento temprano y el grupo de riesgo para las manifestaciones neurológicas de la pos infección por COVID-19.

Palabras clave: manifestaciones neurológicas; mecanismo neuroinvasivo; COVID-19; SARS-CoV-2

INTRODUCTION

The COVID disease emerged in Wuhan-China in 2019 with rapid transmission and caused severe consequences in society, economies, and healthcare systems 1. Until July 2022, more than 500 million confirmed cases of COVID-19 and around 6.3 million deaths have been reported worldwide 2. In this scenario, the data for 2020 showed that the United States had the highest number of cases and deaths from COVID-19 3. The agent responsible for these high rates of morbidity and mortality is SARS-CoV-2. This is a single-stranded RNA virus that belongs to the group of seven coronaviruses that affect humans 4. The symptomatology associated with COVID-19 is respiratory, mainly fever and cough, and the infection can lead to pneumonia 5.

The association between COVID-19 infection and risk factors of neurological manifestations is unclear to date. Recent studies report that SARS-CoV-2 causes damage to the central and peripheral nervous systems6. Complications such as encephalopathy, stroke, atypical, neurocognitive disorders, and neuropsychiatric symptom as delirium and confusion are common in severe infections 7. Post-infection peripheral conditions such as anosmia, ageusia, and Guillain Barré Syndrome have also been previously reported 8. Apparently, the COVID-19 neurologic manifestation seems familiar and may present as the only symptom without any other manifestation of respiratory system involvement 9.

Brain analysis of images before and after infection with SARS-CoV-2 suggests that COVID-19 is associated with neuroanatomic alterations and cognitive impairment 10. In fact, a neuroimaging study with 401 patients with SARS-CoV-2 positive showed structural alterations of the brain, such as longitudinal cortical volume loss and changes in regions 11. Due to the wide variation of symptoms, individuality, and previous comorbidities in the people, the association between COVID-19 with some neurological manifestations is challenging. In addition, there exists the necessity to evaluate the duration and reversibility of neuroimaging changes observed in studies 10. Thus, the aim of this review is update of main neurological manifestations associated with SARS-CoV-2 infection. First, we present the hypothesis of the neuroinvasion mechanisms of SARS-CoV-2. Then, we discuss the possible symptoms related to the COVID-19 infection in the central and peripheral nervous systems. Furthermore, we show the perspectives diagnosis of neurological manifestation post-SARS-CoV-2 infection.

Literature Data Searching

This review presents a mechanistic overview of the clinical research regarding the effects of SARS-CoV-2 on the nervous system. To review possible symptoms associated with the COVID-19 infection in the central and peripheral nervous systems, we selected clinical and epidemiological studies published over two years and two months (May 2020 to July 2022) period. The search included original manuscripts and contemporary reviews published in English, assessed by specific search terms in the title or abstract of the manuscripts available through PubMed. The search terms used were “SARS-CoV-2 and blood-brain barrier”, “SARS-CoV-2 and neuroinvasion mechanisms”, “SARS-CoV-2 and peripheral nervous system”, and “SARS-CoV-2 and central nervous system”. Additionally, “COVID-19 and blood-brain barrier”, “SARS-CoV-2 and neuroinvasive mechanisms,” “COVID-19 and peripheral nervous system”, and “COVID-19 and central nervous system” We performed a specific screening of the clinical studies that investigated neurobiological manifestations after SARS-CoV-2 in the central and peripheral nervous systems.

Hypothesis for the neuroinvasion mechanisms of post-infection by SARS-CoV-2

Although the neuroinvasion mechanism of SARS-CoV-2 is uncharted, some hypotheses have been postulated to explain how the virus crosses the blood-brain barrier (BBB) 12 (Fig. 1). The BBB is a multilayer highly effective system that protects the nervous system from an invasion of pathogenic agents and promotes immune responses 13,14. Some studies postulate that SARS-CoV-2 can infect the endothelial cells, which are cells that compose the BBB and the choroid plexus region that produce the cerebrospinal fluid 15,16. Through the infection, SARS-CoV-2 accesses the nervous system to the pathway known as the hematogenous pathway 2, generating a hyperinflammation stage and loss of BBB permeability 17,18.

Fig. 1 Possible neuroinvasion mechanism post-SARS-CoV-2 infection. 

The most accepted hypothesis of the neuroinvasion mechanism 2 postulates that the SARS-CoV-2 agent predominantly exploits human protein receptors to the angiotensin-converting enzyme receptor (ACE2 receptor) 19,20. This receptor expresses on the cell surface of various human cells, including glial cells and neurons. Additionally, to the direct encroach of nerve endings on the cell surface, other different transmission routes could facilitate SARS-CoV-2 arrival on the nervous system structures 20. The olfactory-neural transport may be the route used by SARS-CoV-2 to invade the brain (Fig. 1). A higher expression of ACE2 receptors in neuronal cells exists in the olfactory cells 21,22. Curiously, in the central nervous system, the ACE2 expression level is significant in pons and medulla oblongata, the neuro-anatomic regions responsible for the brain’s respiratory centers 23. The axon of olfactory neuron cells may form a pathway conducting SARS-CoV-2 to the brain 22. A study evaluating ACE2 receptor expression in 85 human tissues showed 21 different brain regions 23.

Another hypothesis of the neuroinvasion mechanism of SARS-CoV-2 with indirect routes includes the immunity pathway with the malfunction of the immune system and dysregulation of the vascular system 13,14,24 (Fig. 1). SARS-CoV-2 may infect the immune cells and produce excessive immune responses that trigger systemic hyperinflammation 25. In response, the immune cells release cytokines that may damage blood vessels and alter the permeability of the blood-brain barrier 26. Consequently, infected immune cells are vehicles for disseminating SARS-CoV-2 to the nervous system 27. The cerebral vascular endothelium has a self-regulatory function in the vascular system. When SARS-CoV-2 invades the vascular endothelium, it can elevate cerebral blood pressure, causing the blood vessel to rupture and reducing the functionality of the vascular system 28,29. The classical receptor-mediated endocytosis pathway may allow the SARS-CoV-2 entry into epithelial cells. A recent in vitro study explored the hypothesis that SARS-CoV-2 spreads between permissive and nonpermissive neuronal cells 30. SARS-CoV-2 likely uses tunneling nanotubes membranous conduits rich in actin for intercellular invading nonpermissive cells and potentiating infection in permissive cells. Future studies may explore the permissive and nonpermissive pathways of SARS-CoV-2.

Neurobiological manifestations in the central and peripheral nervous systems post-infection by COVID-19

In the post-infection by SARS-CoV-2, the patients may present consequences in the central and peripheral nervous systems. However, the relationship between cause and effect of the neurobiological manifestations is still not elucidated entirely 24,29. Cerebrovascular complications and psychiatry symptoms are reported in the central system and peripheral nervous systems, with demyelinating lesions and neuromuscular symptoms 31,32. Notably, patients with comorbidities, severe infection, and advanced age are the most vulnerable to neurological manifestation post-infection by SARS-CoV-220,29,33-36.

SARS-CoV-2 causes direct damage to the vascular endothelium and hyperinflammation 37. Several studies have reported that cerebrovascular disease is a common complication after SARS-CoV-2 infection, with a prevalence oscillating between 2.3%, 1.4%, and 6% of infected patients 37-40. The common cerebrovascular manifestations are hemorrhagic stroke, ischemic stroke, and the development of coagulopathies such as arterial and venous thrombosis 38,39. Brain biopsies have shown thrombotic microangiopathies in critically state patients after COVID-19 infection 38. In addition, hypoxemia and imbalance of the renin-angiotensin system could be involved in the development of cerebrovascular disease manifestation after COVID-19 28.

Inflammatory lesions of the brain parenchyma, such as encephalitis, have also been documented in patients post-infection with COVID-19 41. A study showed autopsies with the presence of cerebral edema in patients positive for the infection 42. The genome sequencing studies have shown the presence of viral antigen of SARS-CoV-2 in cerebrospinal fluid of patients with encephalitis and meningitis. In addition, cases of encephalopathy have been reported in positive COVID-19 patients 43,44. Seizures have also been a complication in patients hospitalized for COVID-19 45. Mechanisms such as releasing inflammatory cytokines and stimulating astrocytes and microglia could be involved in seizures 46. The stimulation induced by the union of SARS-CoV-2 with the ACE2 receptor in neurons releases IL -6, a pro-inflammatory cytokine. Consequently, COVID-19 causes chronic inflammation, and neuronal hyperexcitability can induce epilepsy 47.

In the context of neurological manifestations, there have been consequences reported in the peripheral nervous system in post-COVID-19 patients 48,49. Anosmia (loss of smell), ageusia (loss of taste), and hyposmia (decreased smell) are the main manifestations reported in patients post-SARS-CoV-2 infection 31,48. A study showed that 50% of patients have taste and smell disorders at the onset of COVID-19 49. Other work exhibits a high prevalence of taste disorders 38.5%, olfactory disorders 35.8%, myalgia 19.3 % 2, and Guillain Barre Syndrome 16.6%12 50. The clinical symptoms of ageusia and anosmia could be considered predictors of SARS- CoV-2 infection 51. A study conducted by Mao et al., with a sample of 214 patients, reports 5.1% with anosmia and 5.6% with ageusia 29. Possibly, anosmia and ageusia manifestations arise from direct injury to olfactory and taste receptors caused by SARS-CoV-2 52.

Furthermore, peripherally paresthesias, dyssynergia (loss of motor coordination), areflexia (loss of reflexes), and flaccid paralysis have been observed in some SARS-CoV-2 positive patients 53. The most frequent manifestation is the Guillain Barré Syndrome, characterized by an immune system reaction that attacks peripheral neuron axons. Guillain Barré Syndrome’s initial symptoms are peripheral weakness and tingling. The progression of the disease can cause generalized paralysis54. The diagnosis may confirm Guillain Barré syndrome in an electroneurography for the absence of the muscle action potential in the axons of peripheral neurons 55. The first case reported of this syndrome associated with COVID-19 was in Wuhan in a 61-year-old woman 56.

It is worth highlighting that musculoskeletal symptoms such as myalgias and paresthesias are also manifestations of the peripheral nervous system associated with SARS-CoV-2 12. An increase in musculoskeletal injury markers such as creatine kinase and lactate dehydrogenase in the blood of some COVID-19 patients was observed 2. A study conducted in Wuhan showed that 32% of patients presented the clinical symptom of difficulty grasping objects after hospitalization for COVID-19 57. Indeed, studies suggest that SARS-CoV-2 leads to deficiencies in muscle strength and endurance, possibly due to inflammatory effects 57,58. A case study reports that post-infection patients correlated the demyelinating lesions with neurologic complications such as anosmia and dysgeusia 31. On the other hand, despite the negative quarantine experience, it is impossible to establish a cause-and-effect relationship between neuropsychiatric conditions and COVID-19 disease 59. Individual and environmental factors such as the stress of confinement or a genetic predisposition influenced by stress can contribute to the development of different neuropsychiatric disorders observed in patients post- COVID-19 infection.

Neuroimaging studies with manifestations associated with post-infection by SARS- CoV-2

Widely used methods of neuroimaging, such as magnetic resonance imaging (MRI) and computed tomography, have been utilized to diagnose neurobiological manifestations associated with post- infection by SARS-CoV-2 33,60,61. One study evaluated with MRI 59 patients positive for COVID-19 and diagnosed white matter lesions (39.0%), subacute infarctions (6.8%), leukoencephalopathy (10.2%), and multiple sclerosis (5.1%) 60. Another study found microhemorrhages related to thrombotic and hypoxemic microangiopathy in 3.4% of the patients 61. Recently, a longitudinal study evaluated 785 participants post-infection by COVID-19 at different times. The research found a reduced tissue contrast and gray matter thickness in the orbitofrontal cortex and parahippocampal gyrus; additionally to changes in functionally connected to the primary olfactory cortex and a reduction in the global brain. Besides, the work data reported a more significant cognitive decline over the evaluation period 11. Interestingly, the study observed abnormalities in limbic brain regions forming a mainly olfactory network that may indicate a future vulnerability of the limbic system in particular, including memory 11.

In computed tomography of critical patients with post-infection by COVID-19 intracerebral, intraventricular, and subarachnoid hemorrhage, frontal hypo metabolism, and cerebellar hypermetabolism were observed 28,62. Curiously, a study evaluating 18 brains of patients who died 0 to 32 days after the onset of symptoms of COVID-19 in the histopathological analysis showed only hypoxic changes and did not show encephalitis or other specific brain changes referable to the infection 63. A study with post-mortem brain magnetic resonance evaluation of 62 patients dead at a time < 24 hours by COVID-19 demonstrated hemorrhagic and posterior reversible encephalopathy syndrome brain lesions 64. Additionally, the study showed that the SARS-CoV-2 seems limited to olfactory impairment, and the brainstem evaluation findings do not support a brain- related contribution to the respiratory distress of the patients 64.

Many studies have focused on searching for biomarkers to express the central nervous system injury induced by SARS-CoV-2 65-68. Neuronal and astrocyte injury markers, such as the neurofilament light chain protein, showed a sustained increase with maintenance. The glial fibrillary acidic protein showed an early peak in plasma and a decrease in the follow-up of 47 positive patients for COVID-19 66. More recently, higher serum concentrations of neurofilament light chains were associated with worse clinical outcomes in 142 hospitalized patients positive for COVID-19 67. The serum concentrations of neurofilament light chains may represent a neuroaxonal injury marker that could predict the extent of neuronal damage 66,67.

Some studies attempt to correlate the presence of neuroinflammation and vascular injury in patients post-infection by COVID-19. For example, cerebrospinal fluid markers of inflammation, such as neopterin and beta microglobulin, were increased in a study that evaluated six patients 68. Also, high levels of antiphospholipid antibodies have been shown in positive cases of encephalomyelitis 69. Finally, studies carried out with PCR report the presence of anti-SARS-CoV-2 antibodies and SARS-CoV-2 RNA in the cerebrospinal fluid 70,71. Of note is the presence of anti-SARS-CoV-2 and SARS-CoV-2 RNA in the cerebrospinal fluid in patients with severe complications such as encephalitis, meningitis, and demyelinating disease 71. Currently, it is impossible to affirm the sensitivity of the positive SARS-CoV-2 PCR method in cerebrospinal fluid. In cases of clinical patient examination of the cerebrospinal fluid for viruses such as tick-borne encephalitis, the diagnosis for PCR is not standard because it has low sensitivity. In addition, the presence of the encephalitis virus may be transient in the cerebrospinal fluid. Therefore, it is not yet clear which is the best diagnostic approach to diagnose SARS-CoV-2 CNS infection or the parainfectious immune reaction associated with SARS-CoV-2. So far, there are no reports on the intrathecal synthesis of SARS-CoV-2-specific IgG 72.

Limitations

Our study also has several limitations. First, this review’s characteristic and purpose is the literature update. Second, it does not realize a systematic review of post-infection by SARS-CoV-2 to assess the observational and or randomized clinical trials of literature. This paper did not explore the link between SARS-CoV-2 and the neurocognitive deficit. Various factors may influence the correlation of cognitive disorders in people infected by SARS-CoV-2- For example, the stress caused by isolation, the pandemic restrictions, online teaching, and the return to regular activities 73-75. In addition, different studies report memory loss, cognitive deterioration, depression, and deficits in executive functioning evaluated in different periods after infecting by COVID-19 74,76-78. Nonetheless, is not possible to differentiate whether the cognitive impairment found in patients post-COVID-19 infection corresponded to mild cognitive impairment or dementia 79.

Conclusions and Future Directions

This review discussed the primary evidence underlining the neurobiological manifestations associated with post- infection by SARS-CoV-2. Of particular relevance, compelling evidence suggests that post-infection by SARS-CoV-2 patients presents neurological manifestations in the central and peripheral nervous system. In support, several observational studies have shown cerebrovascular complications and inflammatory lesions in the peripheral system, causing demyelinating lesions and neuromuscular symptoms 31,32,41. The duration of neurological manifestations after COVID-19 infection seems to vary during the first six months after the illness onset

80. Given this, some studies have investigated the possible neuroinvasion mechanism of SARS-CoV-2, and postulated hypotheses to explain the virus penetration across the blood-brain barrier. However, clinical studies assessing the specific manifestations associated with post-infection by SARS-CoV-2 are still scarce, and their results are sometimes controversial.

The discrepant results from observational studies call for the need to conduct future studies. Considering the risk factors and comorbidities in patients, this should be done before affirming the association between neurological manifestations and post-infection by SARS-CoV-2. Neurological complications are associated with the worst mortality rates 81.

According to a recent systematic analysis, most research published on neurocognitive deficits following SARS-CoV-2 infection recruited subjects before the world’s population was utterly immunized 82. Another systematic review showed that non-specific inflammatory CSF abnormalities were common in patients with post-COVID-19 infection and nervous system syndromes. The study suggests that neurodegeneration biomarkers and a link to neuronal damage with long-term consequences are unknown 83. On the other hand, in brain MRI, the heterogeneity of the studies about neurologic damage in patients after COVID-19 infection precludes any generalization of the findings 84. Therefore, new research may assess the potential of post-infection by SARS-CoV-2 to cause neurological manifestations in patients in the current context after worldwide vaccination. In this sense, there are several publications related to SARS-CoV-2 vaccination and neurological disorders such as the thrombotic thrombocytopenic syndrome 85,86. Finally, the new studies should focus on research to understand the therapeutic method of early treatment, adequate diagnosis, and risk group for neurological manifestations post-infection by SARS-CoV-2 87.

REFERENCES

1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, Liu L, Shan H, Lei C, Hui D, Du B, Li L, Zeng G, Yuen K, Chen R, Tang C, Wang T, Chen P, Xiang J, Li S, Wang J, Liang Z, Peng Y, Wei L, Liu Y, Hu Y, Peng P, Wang J, Liu J, Chen Z, Li G, Zheng Z, Qiu S, Luo J, Ye C, Zhu S, Zhong N. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-1720. https://doi.org/ 10.1056/NEJMoa2002032. [ Links ]

2. Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-CoV-2. Signal Transduct Target Ther 2021; 6(1): 1-11. https://doi.org/ 10.1038/s41392-021-00818-7. [ Links ]

3. Pei S, Yamana TK, Kandula S, Galanti M, Shaman J. Burden and characteristics of COVID-19 in the United States during 2020. Nature 2021; 598(7880): 338-341. https://doi.org/ 10.1038/s41586-021-03914-4. [ Links ]

4. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G, Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-733. https://doi.org/ 10.1056/NEJMoa2001017. [ Links ]

5. Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger A, Pipavath S, Wurfel M, Evans L, Kritek P, West T, Luks A, Gerbino A, Dale C, Goldman J, O’Mahony S, Mikacenic C. Covid-19 in critically Ill patients in the Seattle Region - case series. N Engl J Med 2020; 382(21): 2012-2022. https://doi.org/ 10.1056/NEJMoa2004500. [ Links ]

6. Li H, Xue Q, Xu X. Involvement of the nervous system in SARS-CoV-2 infection. Neurotox Res 2020; 38(1): 1-7. https://doi.org/ 10.1007/s12640-020-00219-8. [ Links ]

7. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, Collange O, Boulay C, Fafi-Kremer S, Ohana M, Anheim M, Meziani F. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382(23): 2268-2270. https://doi.org/ 10.1056/NEJMc2008597. [ Links ]

8. Valiuddin H, Kalajdzic A, Rosati J, Boehm K, Hill D. Update on neurological manifestations of SARS-CoV-2. West J Emerg Med 2020; 21(6): 45-51. https://doi.org/ 10.5811/westjem.2020.8.48839. [ Links ]

9. Favas TT, Dev P, Chaurasia RN, Chakravarty K, Mishra R, Joshi D, Mishra V, Kumar A, Singh V, Pandey M, Pathak A. Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurological Sciences 2020; 41(12): 3437-3470. https://doi.org/ 10.1007/s10072-020-04801-y. [ Links ]

10. Kremer S, Jäger HR. Brain changes after COVID-19 - how concerned should we be? Nat Rev Neurol 2022; 18(6): 321-322. https://doi.org/ 10.1038/s41582-022-00661-6. [ Links ]

11. Douaud G, Lee S, Almagro F, Arthofer C, Wang C, McCarthy P, Lange F, Andersson J, Griffanti L, Duff E, Jbabdi S, Taschler B, Keating P, Winkler A, Collins R, Matthews P, Allen N, Miller K, Nichols T, Smith S. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022; 604(7907): 697-707. https://doi.org/ 10.1038/s41586-022-04569-5. [ Links ]

12. Dos Santos M, Devalle S, Aran V, Capra D, Roque N, Coelho J, Spohr T, Subilhaga J, Pereira C, D’Andrea M, Niemeyer P, Moura V. Neuromechanisms of SARS- CoV-2: a review. Front Neuroanat 2020; 14(37): 1-10. https://doi.org/ 10.3389/fnana.2020.00037. [ Links ]

13. Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host & Microbe 2013; 13(4): 379-393. https://doi.org/ 10.1016/j.chom.2013.03.010. [ Links ]

14. Manglani M, McGavern DB. New advances in CNS immunity against viral infection. Curr Opin Virol 2018; 28: 116-126. https://doi.org/ 10.1016/j.coviro.2017.12.003. [ Links ]

15. Yang A, Kern F, Losada P, Agam M, Maat C, Schmartz G, Fehlmann T, Stein J, Schaum N, Lee D, Calcuttawala K, Vest R, Berdnik D, Lu N, Hahn O, Gate D, McNerney M, Channappa D, Cobos I, Ludwig N, Schulz W, Keller A, Wyss T. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021; 595(7868): 565-571. https://doi.org/ 10.1038/s41586-021-03710-0. [ Links ]

16. Alquisiras I, Peralta I, Alonso L, Zacapala A, Salmerón E, Aguilera P. Neurological complications associated with the blood- brain barrier damage induced by the inflammatory response during SARS-CoV-2 infection. Molecular Neurobiology 2021; 58(2): 520-535. https://doi.org/ 10.1007/ s12035-020-02134-7. [ Links ]

17. Pellegrini L, Albecka A, Mallery D, Kellner M, Paul D, Carter A, James L, Lancaster M. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 2020; 27(6): 951-961. https:// 10.1016/j.stem.2020.10.001. [ Links ]

18. Wruck W, Adjaye J. SARS-CoV-2 receptor ACE2 is co-expressed with genes related to transmembrane serine proteases, viral entry, immunity and cellular stress. Sci Rep 2020; 10(1): 1-12. https://doi.org/ 10.1038/s41598-020-78402-2. [ Links ]

19. Hoffmann M, Kleine H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens T, Herrler G, Wu N, Nitsche A, Müller M, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280. https://doi.org/ 10.1016/j.cell.2020.02.052. [ Links ]

20. Han Y, Yuan K, Wang Z, Liu W, Lu Z, Liu L, Shi L, Yan W, Yuan J, Li J, Shi J, Liu Z, Wang G, Kosten T, Bao Y, Lu L. Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions. Transl Psychiatry 2021; 11(1):1-16. https://doi.org/ 10.1038/s41398-021-01629-8. [ Links ]

21. Bilinska K, Jakubowska P, von Bartheld CS, Butowt R. Expression of the SARS- CoV-2 entry proteins, ACE2 and TMPRSS2, in Cell s of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 2020; 11(11):1555-1562. https://doi.org/ 10.1021/acschemneuro.0c00210. [ Links ]

22. Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain Infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci 2020; 11(9): 1200-1203. https://doi.org/ 10.1021/acschemneuro.0c00172. [ Links ]

23. Lukiw W, Pogue A, Hill J. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol Neurobiol 2022; 42(1):217-224. https://doi.org/ 10.1007/s10571-020-00947-7. [ Links ]

24. Najjar S, Najjar A, Chong D, Pramanik B, Kirsch C, Kuzniecky R, Pacia S, Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation 2020; 17(1):2-14. https://doi.org/ 10.1186/s12974-020-01896-0. [ Links ]

25. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews 2020; 53: 25-32. https://doi.org/ 10.1016/j.cytogfr.2020.05.003. [ Links ]

26. Mohammadi S, Moosaie F, Aarabi M. Understanding the immunologic characteristics of neurologic manifestations of SARS-CoV-2 and potential immunological mechanisms. Molecular Neurobiology 2020; 57(12): 5263-5275. https://doi.org/ 10.1007/s12035-020-02094-y. [ Links ]

27. Li Z, Liu T, Yang N, Han D, Mi X, Li Y, Liu K, Vuylsteke A, Xiang H, Guo X. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med 2020; 14(5): 533-541. https://doi.org/ 10.1007/s11684-020-0786-5. [ Links ]

28. Sharifi-Razavi A, Karimi N, Rouhani N. COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes New Infect 2020; 35: 100669. https://doi.org/ 10.1016/j.nmni.2020.100669. [ Links ]

29. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X, Li Y, Hu B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683 - 690. https://doi.org/ 10.1001/jamaneurol.2020.1127. [ Links ]

30. Pepe A, Pietropaoli S, Vos M, Barba-Spaeth G, Zurzolo C. Tunneling nanotubes provide a route for SARS-CoV-2 spreading. Sci Adv 2022;8(29):eabo0171. doi: 10.1126/sciadv.abo0171Links ]

31. Zanin L, Saraceno G, Panciani P, Renisi G, Signorini L, Migliorati K, Fontanella M. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir 2020; 162(7): 1491-1494. https://doi.org/ 10.1007/s00701-020-04374-x. [ Links ]

32. Rogers J, Chesney E, Oliver D, Pollak T, McGuire P, Fusar P, Zandi M, Lewis G, David A. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020; 7(7):611-627. https:// 10.1016/S2215-0366(20)30203-0. [ Links ]

33. Xiong W, Mu J, Guo J, Lu L, Liu D, Luo J, Yang D, Gao H, Zhang Y, Lin M, Shen S, Zhang H, Chen L, Wang G, Luo F, Li W, Chen S, He L, Sander J, Zhou D. New onset neurologic events in people with COVID-19 in 3 regions in China. Neurology 2020; 95(11): 1479-1487. https://doi.org/ 10.1212/WNL.0000000000010034. [ Links ]

34. Mahammedi A, Saba L, Vagal A, Leali M, Rossi A, Gaskill M, Sengupta S, Zhang B, Carriero A, Bachir S, Crivelli P, Pasché A, Premi E, Padovani A, Gasparotti R. Imaging of neurologic disease in hospitalized patients with COVID-19: an italian multicenter retrospective observational study. Radiology 2020; 297(2): 270-273. https://doi.org/ 10.1148/radiol.2020201933. [ Links ]

35. Romero C, Díaz I, Fernández E, Sánchez A, Layos A, García J, González E, Redondo I, Perona A, Del Valle J, Gracia J, Rojas B, Feria I, Monteagudo M, Palao M, Palazón E, Alcahut C, Sopelana G, Moreno Y, Ahmad J, Segura T. Neurologic manifestations in hospitalized patients with COVID-19. Neurology 2020; 95(8): 1060-1070. https://doi.org/ 10.1212/WNL.0000000000009937. [ Links ]

36. Chua TH, Xu Z, King N. Neurological manifestations in COVID-19: a systematic review and meta-analysis. Brain Injury 2020; 34(12): 1549-1568. https://doi.org/ 10.1080/02699052.2020.1831606. [ Links ]

37. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, Wang D, Mao L, Jin H, Hu B. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol 2020; 5(3): 279-284. https://doi.org/ 10.1136/svn-2020-000431. [ Links ]

38. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-847. https://doi.org/ 10.1111/jth.14768. [ Links ]

39. Hernández F, Sandoval H, Barbella R, Collado R, Ayo O, Barrena C, Molina J, García J, Lozano E, Alcahut C, Martínez A, Sánchez A, Segura T. Cerebrovascular disease in patients with COVID-19: neuroimaging, histological and clinical description. Brain 2020; 143(10): 3089-3103. https://doi.org/ 10.1093/brain/awaa239. [ Links ]

40. Harapan B, Yoo H. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol 2021; 268(9): 3059-3071. https://doi.org/ 10.1007/s00415-021-10406-y. [ Links ]

41. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, Ueno M, Sakata H, Kondo K, Myose N, Nakao A, Takeda M, Haro H, Inoue O, Suzuki K, Kubokawa K, Ogihara S, Sasaki T, Kinouchi H, Kojin H, Ito M, Onichi H, Shimizu T, Sasaki Y, Enomoto N, Ishihara H, Furuya S, Yamamoto T, Shimada S. A first case of meningitis/ encephalitis associated with SARS-Corona-virus-2. Int J Infect Dis 2020; 94: 55-58. https:// 10.1016/j.ijid.2020.03.062. [ Links ]

42. Remmelink M, Mendonça R, D’Haene N, Clercq S, Verocq C, Lebrun L, Lavis P, Racu M, Trépant A, Maris C, Rorive S, Goffard J, DeWitte O, Peluso L, Vincent J, Decaestecker C, Taccone F, Salmon I. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Critical Care 2020; 24(1): 495. https://doi.org/ 10.1186/s13054-020-03218-5. [ Links ]

43. Nath A, Smith B. Neurological complications of COVID-19: from bridesmaid to bride. Arq Neuropsiquiatr 2020; 78(8):459-460. https://doi.org/10.1590/0004-282x20200121. [ Links ]

44. Kholin A, Zavadenko N, Nesterovskiy Y, Kholina E, Zavadenko A, Khondkaryan G. Features of neurological manifestations of the COVID-19 in children and adults. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova 2020; 120(9): 114. https://doi.org/ 10.17116/jnevro2020120091114. [ Links ]

45. Parihar J, Tripathi M, Dhamija R. Seizures and epilepsy in times of coronavirus disease 2019 pandemic. J Epilepsy Res 2020; 10(1):3-7. https://doi.org/ 10.14581/jer.20002. [ Links ]

46. Nikbakht F, Mohammadkhanizadeh A, Mohammadi E. How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult Scler Relat Disord 2020; 46: 1-4. https://doi.org/ 10.1016/j.msard.2020.102535. [ Links ]

47. Tufan A, Avanoglu A, Matucci M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci 2020; 50(SI-1): 620- 632. https://doi.org/ 10.3906/sag-2004-168. [ Links ]

48. Padda I, Khehra N, Jaferi U, Parmar M. The neurological complexities and prognosis of COVID-19. SN Compr Clin Med 2020; 2(11): 2025-2036. https://doi.org/ 10.1007/s42399-020-00527-2. [ Links ]

49. Cherry G, Rocke J, Chu M, Liu J, Lechner M, Lund V, Kumar B. Loss of smell and taste: a new marker of COVID-19? Tracking reduced sense of smell during the coronavirus pandemic using search trends. Expert Rev Anti Infect Ther 2020; 18(11): 1165-1170. https://doi.org/ 10.1080/14787210.2020.1792289. [ Links ]

50. López J, Pérez E, León E, Bazán L, Galnares J, Saráchaga A, Briseño M, May R, Vargas E. Síndrome de Guillain-Barré durante la pandemia de COVID-19: experiencia de un centro de referencia en México. Rev Neurol 2021; 73(09): 315. https://doi.org/ 10.33588/rn.7309.2021364. [ Links ]

51. Roland L, Gurrola J, Loftus P, Cheung S, Chang J. Smell and taste symptom‐based predictive model for COVID-19 diagnosis. Int Forum Allergy Rhinol 2020; 10(7): 832-838. https://doi.org/ 10.1002/alr.22602. [ Links ]

52. Vaira L, Salzano G, Deiana G, de Riu G. Anosmia and ageusia: cmmon fndings in COVID-19 patients. Laryngoscope 2020; 130(7):1787. https://doi.org/ 10.1002/lary.28692. [ Links ]

53. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni M, Franciotta D, Baldanti F, Daturi R, Postorino P, Cavallini A, Micieli G. Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med 2020; 382(26): 2574-2576. https://doi.org/ 10.1056/NEJMc2009191. [ Links ]

54. Sheikh A, Chourasia P, Javed N, Chourasia M, Suriya S, Upadhyay S, Ijaz F, Pal S, Moghimi N, Shekhar R. Association of Guillain-Barre syndrome with COVID-19 infection: an updated systematic review. J Neuroimmunol 2021; 355: 2-7. https://doi.org/ 10.1016/j.jneuroim.2021.577577. [ Links ]

55. Alberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML, Santoro P, Vigano M, Giovannelli G, Pirro F, Montisano D, Appollonio I, Ferrarese C. Guillain-Barré syndrome related to COVID-19 infection. Neurol Neuroimmunol Neuroinflamm 2020;7(4): 741. https://doi.org/ 10.1212/NXI.0000000000000741. [ Links ]

56. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol 2020 May;19(5):383- 384. https://doi.org/ 10.1016/S1474-4422(20)30109-5. [ Links ]

57. Disser N, de Micheli A, Schonk M, Konnaris M, Piacentini A, Edon D, Toresdahl B, Casey E, Mendias C. Musculoskeletal consequences of COVID-19. J Bone Joint Surg 2020; 102(14): 1197-1204. https://doi.org/ 10.2106/JBJS.20.00847. [ Links ]

58. Zhang X, Cai H, Hu J, Lian J, Gu J, Zhang S, Ye C, Lu Y, Jin C, Yu G, Jia H, Zhang Y, Sheng J, Li L, Yang Y. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. Int J Infect Dis 2020; 94: 81-87. https://doi.org/ 10.1016/j.ijid.2020.03.040. [ Links ]

59. Brooks S, Webster R, Smith L, Woodland L, Wessely S, Greenberg N, Rubin G. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 2020; 395(10227):912-920. https://doi.org/ 10.1016/S0140-6736(20)30460-8. [ Links ]

60. Freeman C, Masur J, Hassankhani A, Wolf R, Levine J, Mohan S. Coronavirus disease (COVID-19) related disseminated leukoencephalopathy: a retrospective study of findings on brain MRI. AJR Am J Roentgenol 2021; 216(4): 1046-1047. https://doi.org/ 10.2214/AJR.20.24364. [ Links ]

61. Kremer S, Lersy F, Sèze J, Ferré J, Maamar A, Carsin B, Collage O, Bonneville F, Adam G, Martin G, Rafiq M, Geeraerts T, Delamarre L, Grand S, Krainik A, Kremer S, Adam G, Alleg M, Anheim M, Anxionnat R, Ardellier F, Baloglu S, Bapst B, Benzakoun J, Berge J, Bolognini F, Bonneville F, Bornet G, Boulay C, Boulouis G, Boutet C, Brisset J, Caillard S, Carré S, Carsin B, Collange O, Comby P, Constans J, David J, Beaurepaire I, Séze J, Delamarre L, Desal H, Edjlali M, Fabre X, Fafi S, Ferré J, Feuerstein P, Henry M, Forestier G, Gaudemer A, Geeraerts T, Grand S, Hansmann Y, Heintz A, Helms J, Hemmert C, Hmeydia G, Jager L, Kazémi A, Kerleroux B, Khalil A, Krainik A, Lacalm A, Lecler A, Lecocq C, Lefébvre N, Lersy F, Maamar A, Martin G, Matthieu M, Megdiche I, Mertes P, Messié J, Metanbou S, Meyer N, Meziani F, Mutschler V, Nesser P, Oesterlé H, Ohana M, Oppenheim C, Pyatigorskaya N, Rafiq M, Ricolfi F, Saleme S, Schenck M, Schmitt E, Scheneider F, Sebag N, Talla Y, Thouant P, Willaume T, Zhu F, Zorn P, Cotton F. Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology 2020; 297(2): 242-251. https:// 10.1148/radiol.2020202222. [ Links ]

62. Delorme C, Paccoud O, Kas A, Hesters A, Bombois S, Shambrook P, Boullet A, Doukhi D, Le Guennec L, Godefroy N, Maatoug R, Fossati P, Millet B, Navarro V, Bruneteau G, Demeret S, Pourcher V, Delorme C, Corvol J, Delattre J, Carvalho S, Sagnes S, Dubois B, Navarro V, Louapre C, Stojkovic T, Idbaih A, Rosso C, Gales A, Millet B, Rohaut B, Bayen E, Dupont S, Bruneteau G, Lehericy S, Seilhean D, Durr A, Lamari F, Houot M, Brochard V, Dupont S, Lubetzki C, Seilhean D, Pradat P, Rosso C, Hoang K, Fontaine B, Naccache L, Fossati P, Arnulf I, Durr A, Carpentier A, Edel Y, Robain G, Thoumie P, Degos B, Sharshar T, Alamowitch S, Apartis E, Peretti C, Ursu R, Dzierzynski N, Bourron K, Belmin J, Oquendo B, Pautas E, Verny M, Delorme C, Corvol J, Delattre J, Samson Y, Leder S, Leger A, Deltour S, Baronnet F, Gales A, Bombois S, Touat M, Idbaih A, Sanson M, Sanson M, Dehais C, Houillier C, Laigle D, Psimaras D, Alenton A, Younan A, Villain N, Gracli D, Amador M, Bruneteau G, Louapre C, Mariani L, Mezouar N, Mangone G, Meneret A, Hartmann A, Tarrano C, Bendetowicz D, Pradat P, Baulac M, Sambin S, Pichit P, Chochon F, Hesters A, Nguyen B, Procher V, Demoule A, Morawiec E, Mayaux J, Faure M, Ewenczyk C, Coarelli G, Heinzmann A, Stojkovic T, Masingue M, Bassez G, Navarro V, An I, Worbe Y, Lambrecq V, Debs R, Musat E, Lenglet T, Lambrecq V, Hanin A, Chougar L, Shor N, Pyatiforskaya N, Galanaud D, Leclercq D, Demeret S, Rohaut B, Cao A, Marois C, Weiss N, Gassama S, Guennec L, Degos V, Jacquens A, Similowski T, Morelot C, Rotge J, Saudreau B, Millet B, Pitron V, Sarni N, Girault N, Maatoug R, Gales A, Leu S, Bayen E, Thivard L, Mokhtari K, Plu I, Goncalves B, Bottin L, Yger M, Ouvrard G, Haddad R, Ketz F, Lafuente C, Oasi C, Megabarne B, Herve D, Salman H, Rametti A, Chalacon A, Herve A, Royer H, Beauzor F, Maheo V, Laganot C, Minelli C, Fekete A, Grine A, Biet M, Hilab R, Besnard A, Bouguerra M, Goudard G, Houairi S, Al-Youssef S, Pires C, Oukhedouma A, Siuda K, Malkinson T, Agguini H, Said S, Houot M. COVID-19- related encephalopathy: a case series with brain FDG-positron- emission tomography/computed tomography findings. Eur J Neurol 2020; 27(12): 2651-2657. https://doi.org/ 10.1111/ene.14478. [ Links ]

63. Solomon I, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali A, Adams G, Hornick J, Padera R, Sabeti P. Neuropathological features of Covid-19. N Engl J Med 2020; 383(10): 989-992. https://doi.org/ 10.1056/NEJMc2019373. [ Links ]

64. Coolen T, Lolli V, Sadeghi N, Rovai A, Trotta N, Taccone F, Creteur J, Henrard S, Goffard J, Dewitte O, Naeije G, Goldman S, Tiége X. Early post-mortem brain MRI findings in COVID-19 non-survivors. Neurology 2020; 95(14): 2016-2027. https://doi.org/ 10.1212/WNL.0000000000010116. [ Links ]

65. Ameres M, Brandstetter S, Toncheva A, Kabesch M, Leppert D, Kuhle J, Wellmann S. Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19. J Neurol 2020; 267(12): 3476-3478. https://doi.org/ 10.1007/s00415-020-10050-y. [ Links ]

66. Kanberg N, Ashton N, Andersson L, Yilmaz A, Lindh M, Nilsson S, Price R, Blennow K, Zetterberg H, Gisslén M. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 2020; 95(12): 1754-1759. https://doi.org/ 10.1212/WNL.0000000000010111. [ Links ]

67. Prudencio M, Erben Y, Marquez C, Jansen K, Franco C, Heckman M, White L, Dunmore J, Cook C, Lilley M, Song Y, Harlow C, Oskarsson B, Nicholson K, Wszolek Z, Hickson L, O’Horo J, Hoyne J, Gendron T, Meschia J, Petrucelli L. Serum neurofilament light protein correlates with unfavorable clinical outcomes in hospitalized patients with COVID-19. Sci Transl Med 2021; 13(602): 1-10. https://doi.org/ 10.1126/scitranslmed.abi7643. [ Links ]

68. Edén A, Kanberg N, Gostner J, Fuchs D, Hagberg L, Andersson L, Lindh M, Price R, Zetterberg H, Gisslén M. CSF biomarkers in patients with COVID-19 and neurological symptoms. Neurology 2020; 96(2): 294-300. https://doi.org/ 10.1212/WNL.0000000000010977. [ Links ]

69. Benjamin L, Paterson R, Moll R, Pericleous C, Brown R, Mehta P, Athauda D, Ziff O, Heaney J, Checkley A, Houlihan C, Chou M, Heslegrave A, Foulkes A, Mummerry C, Lunn M, Keddie S, Spyer M, Mckinnon T, Hart M, Carletti F, Jäger H, Manji H, Zandi M, Werring D, Nastouli E, Simister R, Solomon T, Zetterberg H, Schott J, Cohen H, Efthymiou M. Antiphospholipid antibodies and neurological manifestations in acute COVID-19: a single-centre crosssectional study. EClinicalMedicine 2021; 39: 2589-5370. https://doi.org/ 10.1016/j.eclinm.2021.101070. [ Links ]

70. Alexopoulos H, Magira E, Bitzogli K, Kafasi N, Vlachoyiannopoulos P, Tzioufas A, Kotanidou A, Dalakas M. Anti-SARS-CoV-2 antibodies in the CSF, blood-brain barrier dysfunction, and neurological outcome. Neurol Neuroimmunol Neuroinflamm 2020; 7(6): 893. https://doi.org/ 10.1212/ NXI.0000000000000893. [ Links ]

71. Domingues R, Mendes M, Moura L, Sabino E, Salarini D, Claro I, Santos D, Jesus J, Ferreira N, Romano C, Soares C. First case of SARS-COV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J Neurol 2020; 267(11):3154-3156. https://doi.org/ 10.1007/ s00415-020-09996-w. [ Links ]

72. Romoli M, Jelcic I, Bernard R, García D, Mancinelli L, Akhvlediani T, Monaco S, Taba P, Sellner J. A systematic review of neurological manifestations of SARS‐CoV-2 infection: the devil is hidden in the details. Eur J Neurol 2020; 27(9): 1712-1726. https://doi.org/ 10.1111/ene.14382. [ Links ]

73. Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, Shi C, Hu S. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res 2020; 129: 98-102. https://doi.org/ 10.1016/j.jpsychires.2020.06.022. [ Links ]

74. Lamontagne S, Winters M, Pizzagalli D, Olmstead M. Post-acute sequelae of COVID-19: evidence of mood & amp; cognitive impairment. Brain Behav Immun Health 2021; 17: 1-11. https://doi.org/ 10.1016/j.bbih.2021.100347. [ Links ]

75. Miskowiak K, Johnsen S, Sattler S, Nielsen S, Kunalan K, Rungby J, Lapperre T, Porsberg C. Cognitive impairments four months after COVID-19 hospital discharge: pattern, severity and association with illness variables. Eur Neuropsychopharmacol 2021; 46: 39-48. https://doi.org/ 10.1016/j.euroneuro.2021.03.019. [ Links ]

76. Becker J, Lin J, Doernberg M, Stone K, Navis A, Festa J, Wisnivesky J. Assessment of cognitive function in patients after COVID-19 infection. JAMA Netw Open 2021; 4(10): 1-4. https://doi.org/ 10.1001/jamanetworkopen.2021.30645. [ Links ]

77. Davis H, Assaf G, McCorkell L, Wei H, Low RJ, Re ’em Y, Redfield S, Austin J, Akrami A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021; 38: 1-19. https://doi.org/ 10.1016/j.eclinm.2021.101019. [ Links ]

78. Alemanno F, Houdayer E, Parma A, Spina A, Forno A, Scatolini A, Angelone S, Brugliera L, Tettamanti A, Beretta L, Iannaccone S. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS One 2021; 16(2): 0246590. https://doi.org/ 10.1371/journal.pone.0246590. [ Links ]

79. Tavares J, Souza A, Borges J, Oliveira D, Siqueira J, Sobreira M, Braga P. COVID-19 associated cognitive impairment: a systematic review. Cortex 2022; 152:77-97. https://doi.org/ 10.1016/j.cortex.2022.04.006. [ Links ]

80. Pinzon R, Wijaya V, Jody A, Nunsio P, Buana R. Persistent neurological manifestations in long COVID-19 syndrome: a systematic review and meta-analysis. J Infect Public Health 2022; 15(8): 856-869. https://doi.org/ 10.1016/j.jiph.2022.06.013. [ Links ]

81. Mahdizade M, Mohamadi M, Shadab N, Abbasimoghaddam S, Shekartabar A, Heidary M, Khoshnood S. Neurological manifestations in patients with COVID-19: a systematic review and meta-analysis. J Clin Lab Anal 2022; 36(5): 1-13. https://doi.org/ 10.1002/jcla.24403. [ Links ]

82. Houben S, Bonnechère B. The impact of COVID-19 infection on cognitive function and the implication for rehabilitation: a systematic review and meta-analysis. Int J Environ Res Public Health 2022; 19(13): 7748. https://doi.org/ 10.3390/ijerph19137748. [ Links ]

83. Domingues R, Leite M, Senne C. Cerebrospinal fluid analysis in patients with COVID-19-associated central nervous system manifestations: a systematic review. Arq Neuropsiquiatr 2022; 80(3): 296-305. https://doi.org/ 10.1590/0004-282xanp-2021-0117. [ Links ]

84. Araújo S, Araújo C, Silva R, Oliveira L, Souza N, Miranda D, Simoes A. Imaging markers of neurologic damage in COVID-19: a systematic review. Curr Med Chem 2022; 29. https://doi.org/ 10.2174/0929867329666220701124945. [ Links ]

85. Vizcaino G. Síndrome trombocitopénico inmune trombótico posvacunación. ¿Causalidad o casualidad? Especial referencia a las vacunas Astra-Zeneca COVID-19 (Vaxzevria ®). Gaceta Médica De Caracas, 2021; 129(3), 665-675. Recuperado a partir de http://saber.ucv.ve/ojs/index.php/rev_gmc/article/view/22888. [ Links ]

86. Esparza J, Vizcaino G, Pujol FH. Trombosis asociada a vacunas contra la COVID-19 basadas en vectores adenovirales: implicaciones para la vacunacion en Venezuela. CientMed 2021; 2(28):01-07. doi.org/ 1047449/CM.2021.2.7. [ Links ]

87. Generoso JS, Barichello de Quevedo JL, Cattani M, Lodetti BF, Sousa L, Collodel A, Diaz Dal-Pizzol F. Neurobiology of COVID-19: how can the virus affect the brain? Braz J Psychiatry 2021;43(6):650-664. https://doi: 10.1590/1516-4446-2020-1488. [ Links ]

Funding This study was supported by the Instituto de Investigación and Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador.

Authorship contribution statement

  • DCM: conceptualization; original draft and writing of the manuscript.

  • GV: writing and preparing the final draft of the manuscript.

  • AS: supervision, writing, and preparing the final draft of the manuscript.

  • All authors of this paper have read and approved the final version of the submitted manuscript.

Received: September 03, 2022; Accepted: September 26, 2022

Corresponding author. Aline Siteneski. Instituto de Investigación y Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador. Phone: 00 (593) 959266284. E-mail: aline.siteneski@gmail.com

Conflicts of interest

The authors declare that they have no potential conflicts of interest to disclose related to this study.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License