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Abstract. Apoptosis, necroptosis, and autophagy are cellular mechanisms 
by which cells are programmed to die under various physiological and devel-
opmental stimuli. A multitude of protein mediators of programmed cell death 
have been identified, and apoptosis, necroptosis, and autophagy signals have 
been found to utilize common pathways that elucidate the proteins involved. 
This narrative review focuses on caspase-dependent and caspase-independent 
programmed cell death systems. Including studies of caspase-dependent pro-
grammed cell death, extrinsic pathway apoptotic mechanisms, phosphatidyl-
serine (PS), FAS (APO-1/CD95), tumor necrosis factor (TNF) receptor type 
1 (TNF-R1) and TNF-related apoptosis-inducing ligand (TRAIL), and intrinsic 
or mitochondrial pathway such as cytochrome C, the Bcl-2 family of proteins 
and Smac/Diablo. The Bcl-2 family has apoptotic mediators Bcl-2-associated X 
protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), Bcl-2-interacting 
protein BIM (Bim), Bcl-2 agonist of cell death (Bad), Bid, Bcl-2 adenovirus E1B 
19kDa-interacting protein 1 NIP3 (Bnip3), BMF, HRK, Noxa and PUMA and an-
tiapoptotic proteins such as Bcl-2 itself, Mcl-1, Bcl-w, A1, and Bcl-XL. Moreover, 
caspase-independent programmed cell death pathways include the mitochon-
drial pathway with the protein mediators apoptosis inducing factor (AIF) and 
endonuclease G, and the pathways necroptosis, and autophagy. Understanding 
programmed cell death from those reported in this review could shed substan-
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Resumen. La apoptosis, la necroptosis y la autofagia son mecanismos celu-
lares mediante los cuales las células se programan para morir bajo una amplia 
gama de estímulos fisiológicos. Esta revisión describe en los sistemas de muerte 
celular programada dependientes e independientes de la caspasa. Los estudios 
incluidos sobre la muerte celular programada dependiente de la caspasa inclu-
yen mecanismos apoptóticos de la vía extrínseca que incluyen fosfatidilserina 
(PS), FAS (APO-1/CD95), receptor del factor de necrosis tumoral (FNT) tipo 
1 (FNT-R1) e inductor de la apoptosis relacionada con ligando FNT (TRAIL) 
y vía intrínseca o mitocondrial como el citocromo C, la familia de proteínas 
Bcl-2 y Smac/Diablo. La familia Bcl-2 tiene mediadores apoptóticos, proteína 
X asociada a Bcl-2 (Bax) y antagonista/asesino homólogo de Bcl-2 (Bak), pro-
teína BIM que interactúa con Bcl-2 (Bim), agonista de la muerte celular de 
Bcl-2 (Bad), Bid, proteína 1 que interactúa con el adenovirus E1B 19kDa de 
Bcl-2, NIP3 (Bnip3), BMF, HRK, Noxa y PUMA y proteínas antiapoptóticas como 
la propia Bcl-2, Mcl-1, Bcl-w, A1 y Bcl-XL. Además, las vías de muerte celular 
programada independientes de la caspasa incluyen la vía mitocondrial con los 
mediadores proteicos factor inductor de apoptosis (FIA) y endonucleasa G, las 
vías necroptosis y autofagia. Comprender la muerte celular programada a partir 
de los contenidos descritos en esta revisión podría arrojar luz sustancial sobre 
los procesos de la homeostasis biológica y podría proporcionar la capacidad de 
modular la respuesta de muerte celular programada y conducir a nuevas inter-
venciones terapéuticas en una amplia gama de enfermedades.

           Received: 19-10-2023       Accepted: 18-11-2023

INTRODUCTION

Every hour, billions of cells die in us, 
and our tissues do not shrink because of a 
natural regulation whereby cell death is 
balanced by cell division. It is necessary to 

control both death and cell division in dif-
ferentiated cells to balance the different cell 
populations, avoiding affecting the adjacent 
cells 1.

The process in which cells eliminate 
themselves in a controlled manner is called 

tial light on the processes of biological homeostasis. In addition, identifying 
specific proteins involved in these processes is mandatory to identify molecular 
biomarkers and therapeutic targets. Furthermore, it could provide the ability to 
modulate the programmed cell death response and could lead to new therapeu-
tic interventions in a disease.
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programmed cell death. Programmed cell 
death plays an important role during em-
bryonic development, maintaining tissue 
homeostasis in the body and eliminating 
damaged cells 2. In contrast, excessive or 
defective cell death contributes to a broad 
spectrum of human pathologies. Low-rate 
cell death can result in the formation of 
cancer and autoimmune diseases 3, whereas 
high-rate cell death can result in neurode-
generative disease, immunodeficiency, or 
muscle atrophy 4.

Knowledge of specific/differential pro-
teomic expression in each cell death is es-
sential for the early detection, diagnosis, and 
prognosis of cell-death-related diseases. This 
knowledge is also crucial for the use of more 
precise and personalized pharmacological 
treatments 5. Cell death can be divided into 
three groups: programmed, regulated, and 
accidental 6. Programmed cell death is pres-
ent in embryonic development and tissue 
homeostasis, such as apoptosis and necrop-
tosis. Regulated cell death is that which, pro-
grammed or not, can be induced or inhibited 
by a specific molecular mechanism through 
pharmacology or genetic interventions, for 
example, the release of neutrophil extracel-
lular traps (NETs), a regulated form of neu-
trophil cell death known as NETosis, modu-
lates neutrophil toxic effects. Accidental cell 
death is triggered by external physical condi-
tions, such as ischemia, freeze-thaw cycles, 
or high concentrations of pro-oxidants, an 
example of this type of death are oncosis and 
necrosis 6. Two mechanisms of programmed 
cell death are distinguished: apoptotic cell 
death, dependent on caspases such as extrin-
sic and intrinsic apoptosis, and non-apoptot-
ic cell death, independent of caspases, such 
as autophagy and necroptosis 7.

MATERIALS AND METHODS

Search strategy
The present study is a narrative lit-

erature review comprising scientific stud-
ies conducted between May and July 2023 

that sought to group and describe caspase-
dependent and caspase-independent pro-
grammed cell death, describing the molecu-
lar mechanisms of apoptosis, necroptosis, 
and autophagy. The bibliographic search was 
carried out in the following electronic data-
bases: Medline (PubMed), Sci-ELO, Scopus, 
Science Direct, Cinahl, EMBASE - Excerpta 
Medica Data Base, LILACS, Google Scholar, 
Dialnet, and Cochrane Library Plus. The key-
words used for the search were: programmed 
cell death, apoptosis, caspases, caspase in-
hibitory proteins, mitochondrial / intrinsic 
pathway, extrinsic pathway, necroptosis, au-
tophagy, phosphatidylserine, FAS (APO-1/
CD95), tumor necrosis factor (TNF) recep-
tor type 1 (TNF-R1) and TNF-related apopto-
sis-inducing ligand (TRAIL) and cytochrome 
C, linked by the Boolean operators “AND” 
and “OR”. Additional records were gleaned 
by conducting a ‘snowball’ search, checking 
the reference lists of publications eligible 
for full-text review, and using ResearchGate 
to identify potential articles not included in 
the databases used in the study.

Inclusion and exclusion criteria
The following inclusion criteria were 

applied to select the articles: (1) Access to 
the full text; (2) be a review, clinical trial, 
observational study, or case report/study; 
(3) identify caspase-dependent and cas-
pase-independent programmed cell death; 
(4) describe the molecular mechanisms of 
apoptosis, necroptosis, and autophagy; (6) 
studies whose publication date is from the 
beginning of the databases until July 2023; 
(6) languages were restricted to English, 
German, French, Italian, Spanish, and Por-
tuguese. The exclusion criteria applied were: 
(2) Publications not related to programmed 
cell death and/or describe its molecular 
mechanisms; (2) duplicate documents.

Data extraction
After searching the databases for stud-

ies, the search titles were checked to iden-
tify duplicates and possible publications to 
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add. After reading the abstract, a full-text re-
view of the selected studies was performed. 
Two reviewers (D.F.-L. and J.S.-C.) scruti-
nized and synthesized data from all selected 
studies into a comprehensive table using a 
standardized data extraction. A third review-
er (B.S.) resolved all disagreements between 
them.

RESULTS AND DISCUSSION

Programmed Cell death
Apoptotic cell death functions individu-

ally and selectively and is executed through 
a highly stereotyped series of biochemical 
events that ensure rapid non-inflammatory 
cell elimination. For this reason, the apop-
totic physiological process is produced and 
characterized by decreased cell size, vesicle 
formation, and condensation of the nucleus. 
This series of transformations regulates the 
control of morphogenesis and organogenesis 
during embryonic development, in addition 
to tissue homeostasis in adult organisms 8.

Non-apoptotic cell death is usually de-
scribed as a secondary mechanism for defi-
cient apoptotic conditions. However, it is also 
possible that non-apoptotic programmed 
cell death mechanisms may function in first-
order lines; for example, autophagic cell 
death is carried out during metamorphosis 
in insects. This autophagic cell death elimi-
nates a tissue in its entirety 9. 

In 1972, Kerr et al. 8 coined the term 
apoptosis to differentiate it from the death 
of natural origin, necrosis. The word comes 
from Greek, which refers to the leaves that 
fall from the trees or the petals that fall from 
the flowers. The prefix apo means “distance, 
outside or part” and ptosis “fall,” which lit-
erally means “fall from”. Apoptosis is associ-
ated with caspases, a family of cysteine pro-
teases that control not only apoptosis but 
also proliferation, differentiation, cell shape, 
and cell migration.

Apoptosis is a form of programmed cell 
death 10, which occurs because of tissue and 
cell aging or in response to different external 

agents such as ionizing radiation and chemo-
therapeutic agents 10. It can be considered a 
process that facilitates the elimination of de-
fective cells, so the alteration in the regula-
tion of genes involved in cell death by apop-
tosis can cause and be associated with the 
development of different neoplasms, autoim-
mune diseases, viral infections, and neurode-
generative diseases 11. Apoptosis is an active 
process where the cells react and execute 
their death, programmed, by themselves 10. 
Apoptotic death is considered when a cell 
has lost its individuality or reached a “point 
of no return” at which the cell definitively 
loses its function. Apoptotic cell death trig-
gers two stages. In the first stage, biochemi-
cal mediators attempt to repair a damaged 
cell. If they fail, the cell enters the second 
stage or execution phase, where structural 
changes occur that lead the cell to death 
12. These structural changes affect the cell 
membrane, intracytosolic organelles, and 
the nucleus 8. The cytoskeleton collapses, 
the nuclear envelope disassembles, redis-
tributing the nuclear pores, the nuclear pro-
tein is altered, and the nuclear chromatin 
condenses and fragments, becoming dense 
clumps, with an electrophoretic “ladder” 
pattern, which migrate towards the nuclear 
membrane that shapes. DNA and RNA cleav-
age, due to the activation of Ca2+ and Mg2+ 
dependent endonucleases that cleave ge-
nomic DNA through the internucleosomal 
spaces 13. Also in the mitochondria, DNA de-
grades, and the endoplasmic reticulum los-
es its envelope; its cisterns widen and fuse 
10. The phospholipids of the cell membrane 
change orientation and the phosphatidyl-
serine residues are exposed to the external 
environment; the fragmentation of the phos-
pholipids is induced because of these disrup-
tions, the integrity of the plasma membrane 
is lost, and the mitochondrial membrane 
potential decreases. On the surface of the 
plasma membrane, fragments of membrane-
enclosed cytoplasm called apoptotic bodies 
protrude and are shed, which are cytoplas-
mic remnants surrounded by a membrane 
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such that they are rapidly engulfed by an 
adjacent cell or macrophage when released 
into the external environment, without caus-
ing an inflammatory response 12,14,15. 

Caspases
Cysteine aspartate-specific proteases 

(Caspases, EC 3.4.22.-) are synthesized as 
inactive 30-50 kDa precursors (zymogens) 
that have three domains: an amino-terminal 
domain (prodomain), a domain that will re-
sult in a large subunit (p20) containing the 
active site, and another domain that will end 
in a smaller subunit catalyst (p10) C-ter-
minus 16 (Fig. 1). In the presence of appro-
priate stimuli, a proteolysis process occurs 
between the domains, generating the active 
fragments. There are two types of caspases: 
initiator caspases (Caspase-2, 8, 9, and 10) 
that are activated in response to signs of 
stress or cell damage and that protect and 
activate effector caspases (Caspase-3, 6, and 
7), these will oversee the direct proteolysis 
of different substrates that will lead to the 
death of the cell. One of their first identified 
substrates was Poly ADP-ribose polymerase 
(PARP) 17,18.

Initiator caspases present in their N-
terminal region one or two essential adapter 
domains for their function. In contrast, ef-
fector caspases do not have these domains. 
There are two fundamental ways caspases can 

be activated (intrinsic and extrinsic path-
ways of caspase-dependent apoptosis), but 
although both pathways converge on effec-
tor caspases, they require different caspases 
to initiate the process. Thus, the activation 
of the extrinsic pathway mainly causes the 
recruitment of Caspase-8, and the intrinsic 
pathway principally causes the recruitment 
of Caspase-9 18,19.

During the process of apoptosis, there 
is a massive activation of caspases, which 
specifically cut proteins in cysteine residues 
located near aspartic acid. Caspases initi-
ate a cascade of events that converge into 
a common effector caspase pathway that 
leads to the execution of apoptosis 12,20. The 
apoptotic machinery of the cytoskeleton has 
inactive precursors or initiating procaspases 
8-10 that are activated by proteolytic cleavage 
and are catalyzed by other already active cas-
pases; here, the process remains reversible. 
When activated, the initiator procaspases 
and cell-specific target proteins cleave and 
activate the executor procaspases (3, 6, and 
7). From Caspase-3, the process is irrevers-
ible 17,19.

Apoptosis constitutes a complex series 
of positive and negative events with mul-
tiple positive and negative regulators and 
is integrated into other critical intracellu-
lar pathways such as cell cycle progression, 
phosphorylation-mediated signals, and DNA 

Fig. 1. Structure of Caspases. 

CARD: caspase recruitment and activation domain; DED: Death Effector Domain; p20: large subunit (p20); 
p10: small subunit (p10).

Caspases contain three domains: an N-terminal prodomain, a large subunit (p20) containing the active center 
with cysteine within a conserved QACXG motif, and a small subunit (p10) at the C-terminus.
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damage repair 6. Apoptosis is carried out 
mainly by two alternative pathways of apop-
tosis induction divided into i) apoptosis me-
diated by death receptors expressed on the 
cell surface or extrinsic pathway; ii) apopto-
sis mediated by the mitochondrial or intrin-
sic pathway 18. Signaling by both pathways 
induces the activation of caspases, and each 
pathway uses its own initiator caspases and 
activation complex 12,20. 

Inhibitors of Apoptosis Proteins (IAPs)
Inhibitors of apoptosis proteins (IAPs) 

could inhibit apoptosis by selectively bind-
ing and inhibiting Caspase-3 and Caspase-7, 
but not Caspase-8. IAPs block the caspase 
cascade and inhibit cell death in response to 
proapoptotic stimuli 21. There are currently 
eight protein members of this family, but 
two of them, survivin and X-linked inhibitor 
of protein apoptosis (XIAP), are particularly 
interesting. In this sense, survivin is the only 
IAP associated with the mitotic spindle22. Its 
expression depends on the cell cycle 23. It has 
a double function since it inhibits apoptosis 
through direct and indirect interaction with 
caspases and regulates the cell cycle 24. Sur-
vivin is expressed in embryonic tissue and 
is overexpressed in tumor cells, associated 
with resistance to chemotherapy, but not in 
normal adult tissues 24,25. XIAP is possibly the 
best-studied IAP both at the structural level 
and at the level of its mechanism of action 26.

Furthermore, XIAP is the only member 
of this family that can inhibit both effector 
and initiator caspases. XIAP is frequently el-
evated in tumor cells, leading to resistance 
to chemotherapy 25. Therefore, XIAP is an 
optimal therapeutic target based on its func-
tions; moreover, the inhibition of XIAP re-
stores cellular chemosensitivity 27,28.

Caspase-dependent pathways of apoptosis
Extrinsic pathway: recipients of death
The extrinsic pathway is activated by 

ligands of the family of Tumor necrosis fac-
tor (TNF) proteins. Some ligands can induce 

apoptosis; when they bind to their receptors, 
they trigger caspase activation and initiate 
apoptosis 29. Death receptors are character-
ized by having cysteine-rich extracellular 
domains. They all have in common a death 
domain (DD) domain in the cytoplasmic re-
gion. In general, the binding of ligands to 
death receptors induces their trimerization, 
and subsequently, the DD domains recruit 
adapter molecules that will activate Cas-
pase-8 and, when activated, activate Cas-
pase-3 30. Extrinsic apoptosis is related to 
death receptors on the plasma membrane, 
such as phosphatidylserine (PS), FAS (APO-
1/CD95), TNF receptor type 1 (TNF-R1), 
and TNF-related apoptosis-inducing ligand 
(TRAIL) 31. 

Phosphatidylserine (PS) 
In cells, the negatively charged PS is 

only localized to the cytosolic side of the 
lipid bilayer of the plasma membrane, but 
when it is translocated to the outer mono-
layer of the cell, it acts as an “eat me” signal, 
so it is considered as a marker of extrinsic 
apoptosis. In addition to expressing signals 
on the cell surface that stimulate apoptosis, 
PS also blocks inflammation in the phago-
cytic cell by inhibiting the production of cy-
tokines proinflammatory signaling proteins 
32. It must be considered that apoptotic cells 
must not only activate the signals that in-
duce cell death but also inactivate or lose 
the death signals 12.

Fas (APO-1/CD95)
Fas (APO-1 / CD95) is ubiquitously ex-

pressed on the cell’s surface as a membrane 
protein of 40 kDa, which is highly expressed 
in T lymphocytes and activated natural kill-
er (NK) cells 33. The activation of Fas at the 
cell surface is done by binding the Fas ligand 
(FasL) to the surface of a cytotoxic lympho-
cyte. The death domains of the cytosolic tails 
of Fas death receptors recruit adapter pro-
teins, which in turn recruit procaspase ini-
tiators such as procaspase-8, procaspase-10, 
or both, forming the death-inducing signal-
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ing complex (DISC) 34. In practice, once ac-
tivated in the DISC, the initiator caspases 
activate the next executor procaspases in 
the cascade, inducing apoptosis. This path-
way begins with the formation of the DISC 
in which an adapter molecule called Fas as-
sociated death domain (FADD) and procas-
pase-8 intervene. FADD binds to Fas through 
their respective DD domains and to pro-
caspase-8 through a death effector domain 
(DED). The oligomerization of procaspase-8 
in the DISC complex results in the activation 
of Caspase-8 and subsequent activation of 
other caspases. Depending on the cell type, 
Caspase-8 can directly activate Caspase-3 
or proteolyze the carboxy-terminus of BH3 
interacting domain death agonist (Bid), a 
proapoptotic protein from the Bcl-2 family. 
Translocation of the truncated form of Bid 
into the mitochondria will activate the mito-
chondrial pathway 35,36 (Fig. 2). 

The Fas / Fas ligand (FasL) system par-
ticipates in the elimination of T and B lym-
phocytes, viruses-infected cells, and cancer 
cells. Doxorubicin and methotrexate (cyto-
toxic agents) or immunomodulatory drugs 
(IMiDs) activate this pathway to achieve cell 
death in malignant cells in cancer disease 37. 

Furthermore, FasL can also interact 
with the DcR receptor, a soluble secreted 
receptor of the TNF superfamily. Some cells 
produce “decoy” receptors on the cell sur-
face with a ligand-binding domain but no 
death domain; therefore, they can bind to 
a death ligand but do not trigger apoptosis. 
When FasL binds to DcR3, it inhibits FasL/
Fas apoptotic activity, thus acting as a “de-
coy.” Cells can also produce intracellular 
blocking proteins such as FADD-like IL-1β-
converting enzyme (FLICE)-inhibitory pro-
tein (FLIP), which resembles procaspase but 
lacks a proteolytic domain; FLIP competes 

Fig. 2. Extrinsic apoptotic pathway by FAS cell death receptors.
FAS is a cell surface receptor that, when binding to its ligand, causes apoptosis. (APO-1/CD95); FASL: Fas 

ligand; FADD: Fas Associated Death Domain; DD: Death Domain; DED: Death Effector Domain; DISC: 
Death-Inducing Signaling Complex; Bid: BH3 Interacting Domain Death Agonist Protein.

Diagram of apoptotic signals of the extrinsic pathway: mediated by FAS receptors of cell death. Caspase-8 can 
directly activate Caspase-3 or proteolyze the carboxy-terminal end of Bid, a proapoptotic protein of 
the Bcl-2 family. The translocation of the truncated form of Bid to the mitochondria will activate the 
mitochondrial pathway.
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with procaspases-8 and 10 for binding sites 
on DISC and thus inhibits the activation of 
these initiating procaspases 38,39. 

Tumor necrosis factor (TNF) receptor type 
1

Tumor necrosis factor-α (TNF-α) is a 
type II transmembrane protein that medi-
ates the inflammatory response, regulation 
of immune cells, and cytotoxicity. TNF-α 
binds to tumor necrosis factor receptor 1 
(TNF-R1), also known as death receptor 1 
(DR1), and tumor necrosis factor receptor 
2 (TNF-R2). TNFR1 and TFNR2 are involved 
in pro-survival signaling and proliferation by 
activating the nuclear factor kappa B (NF-
kB) pathway 31,40. 

TNF-R1 can be found in all cell types, 
and TNF-R2 is mainly expressed in immune 
and endothelial cells 40. TNF-R1 is ubiqui-
tously expressed, like Fas, whereas its ligand 
TNF-α is only expressed on activated macro-

phages and lymphocytes in response to in-
fections 35. TNF-R1 has a death domain that 
can trigger apoptosis by activating the cas-
pase cascade. Upon activation, TNF binds 
to its receptor via trimerization of TNFR1. 
Subsequently, a TNFR-associated death do-
main protein (TRADD) adapter molecule is 
added that induces association with FADD 
and activation of Caspase-8. In addition to 
the apoptotic pathway, TNF induces other 
signal transduction pathways from TRADD 
that trigger the activation of NF-κB and c-
Jun Kinase (JNK)/Ap-1 41,42 (Fig. 3). 

TNF-Related Apoptosis-Inducing Ligand 
(TRAIL)

TRAIL is a type II homotrimeric trans-
membrane protein expressed on the surface 
of T cells, macrophages, and NK cells, mod-
ulating the immune response 31. Zinc bind-
ing is essential for recognizing the receptor 
and the subsequent induction of apoptosis 

Fig. 3. Extrinsic apoptotic pathway by Tumor Necrosis Factor Receptor type 1 cell death receptors.
TNF: tumor necrosis factor; TNFR1: Tumor Necrosis Factor Receptor; TRADD: Tumor Necrosis Factor Recep-

tor (TNFR)-Associated Death Domain protein; RIPs: Receptor Interacting Proteins; FADD: Fas Associa-
ted Death Domain; Bid: BH3 Interacting Domain Death Agonist Protein.

Signaling pathway of the TNF receptor 1. TRADD adapter molecule is added, which induces the association 
with FADD and the activation of Caspase-8. 
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by stabilizing the trimeric conformation in 
TRAIL residue Cys230, which is essential 43. 
When TRAIL binds to DRs, it induces recep-
tor trimerization, which triggers the extrin-
sic apoptotic pathway in transformed cells 
without affecting non-transformed cells 44.

TRAIL binds to two death receptors 
(DR), DR 4 and DR5, and “three decoys 
receptors” (DcR) (DcR1, DcR2, and osteo-
protegerin (OPG)). TRAIL-R1 or DR4 and 
TRAIL-R2 or DR5, with 60% homology, can 
trigger apoptosis and determine whether 
a cell is resistant or sensitive to TRAIL 31. 
DcR1, or TRAIL-R3, is a GPI-anchored pro-
tein lacking the intracellular and transmem-
brane domains, while DcR2 or TRAIL-R4 has 
an intracellular portion containing a trun-
cated DD; both receptors are unable to in-
duce apoptosis after binding of TRAIL 45,46. 
OPG is a soluble receptor that can be re-

leased from the cardiovascular system, gas-
trointestinal tract, lung, kidney, bone, and 
immune cells 47. OPG binds TRAIL and many 
ligands, including another member of the 
TNF family, the receptor activating nuclear 
factor kB ligand (RANKL) 48.

Intrinsic pathway: mitochondrial death 
pathway

Intrinsic apoptosis is activated from 
within the cell in response to injury or other 
forms of stress, such as DNA damage, lack 
of oxygen, UV radiation, nutrient or survival 
signals, oxidizing agents, drugs, and growth 
factors 49 (Fig. 4). 

Although mitochondria were consid-
ered a passive element in apoptotic cell 
death, which only reflected damage to 
critical functions due to cell death 50, this 
apoptotic pathway depends on the release 

Fig. 4. Potential signals of the activation of the intrinsic apoptotic pathway.
PBK: Protein kinase B; AKT: serine-threonine kinase (also known as protein kinase B (PKB) phosphorylated by 

PDK1 kinase.; BAD: Bcl-2 agonist of cell death; BIM: B-cell lymphoma 2 interacting mediator of cell 
death; BIMF: proapoptotic protein BIM family; BID: BH3-interacting domain death agonist; BCL-XL: 
B-cell lymphoma-extra-large; BCL-2: B-cell lymphoma 2; BAX: bcl-2-like protein 4; NOXA: (Latin for 
damage) is a proapoptotic member of the Bcl-2 protein family; p53: Tumor protein P53; PUMA: p53 
upregulated modulator of apoptosis. 

In signaling activation of the mitochondrial pathway of apoptosis, the BH3 domain is essential for apoptotic 
activity. Proteins that inhibit apoptosis and/or promote cell survival include Bcl-2, and Bcl-XL, loca-
ted in the outer mitochondrial membrane, and the proteins Bim, Bad, Bid, Bimf, and Bax are found 
mainly in the cytosol and can be translocated to mitochondria in response to apoptotic stimuli.
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into the cytosol of mitochondrial proteins 
that normally reside in the intermembrane 
space 51.

Cytochrome-C
Cytochrome C is a protein that partici-

pates in the electron transport chain located 
in the intermembrane space of the mito-
chondria, and that can be used as a biomark-
er of the apoptosis process 1. Cytochrome C, 
performs an entirely different function; after 
being released into the cytosol, it binds to 
a procaspase-activating protein called apop-
totic protease-activating factor-1 (Apaf1), 
causing the oligomerization of Apaf-1 into a 
heptameric wheel-like structure called apop-
tosome 52. In the apoptosome, Apaf1 pro-
teins recruit initiator procaspase molecules 
(procaspase-9); these are activated into Cas-
pase-9 and induce an apoptotic cascade acti-

vating one of the following chain executing 
procaspases-3, -6, and -7 inducing apopto-
sis53 (Fig. 5). 

Bcl-2 family proteins
Bcl-2 family of proteins controls and reg-

ulates the entire process of intrinsic apopto-
sis. Bcl-2 family proteins actively participate 
in this pathway, which, through interactions 
between them, regulates the permeabili-
zation of mitochondria and the release of 
apoptogenic proteins into the cytosol 1. The 
Bcl-2 family of proteins contains at least one 
conserved domain, known as Bcl-2 homology 
domains (BH [BH1, BH2, BH3 and BH4]). 
The proteins of the Bcl-2 family are classi-
fied based on their function and structure: 
i) Antiapoptotic proteins, which contain the 
domains BH1 and BH2; ii) Proapoptotic pro-

Fig. 5. Intrinsic pathway by Cytochrome C-mediated apoptosis.
Apaf-1: Apoptotic protease-activating factor 1; IAP: Inhibitors of Apoptosis Protein; PARP: Poly (ADP-ribose) 

polymerase; BID: BH3 Interacting Domain Death Agonist; BIM: B-cell lymphoma 2 interacting me-
diator of cell death; BAD: Bcl-2 agonist of cell death; BCL-2: B-cell lymphoma 2; MCL-1: Induced 
myeloid leukemia cell differentiation protein; BCL-XL: B-cell lymphoma-extra-large; BAX: bcl-2-like 
protein 4; BAK: Bcl-2 homologous antagonist/killer; Smac / DIABLO: Second Mitochondria-derived 
Activator of Caspase.

Release to the cytosol binds to the Apaf-1 protein and procaspase-9, forming the apoptosome complex, indu-
cing caspase-9 and the caspase activation cascade.
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teins containing the BH1, BH2, and BH3 do-
mains; iii) Proapoptotic proteins containing 
only the BH3 domain54. Most of the antiapop-
totic members maintain sequence conserva-
tion in their four domains, while those with 
proapoptotic activity have less conservation 
of the first α-helix BH4 segment. Thus, the 
proteins of the Bcl-2 family are proapoptotic, 
and others are antiapoptotic. They can bind 
to each other in various combinations and 
form heterodimers in which the two proteins 
mutually inhibit each other. However, when 
a more significant proportion of these activi-
ties occur, the cell’s susceptibility to death 
or survival is determined 55,56.

Antiapoptotic proteins
Antiapoptotic Bcl-2 proteins, such as 

Bcl-2 itself, Mcl-1, Bcl-w, A1, and Bcl-XL, are 
found on the cytosolic surface of the outer 
mitochondrial membrane, endoplasmic re-
ticulum, and nuclear envelope, where they 
help maintain membrane integrity. This 
group of proteins inhibits apoptosis and/
or promotes cell survival 54. The three anti-
apoptotic proteins of the Bcl-2 family, Bcl-
2, Bcl-XL, and Mcl-1, prevent the activation 
of the mitochondrial apoptosis pathway, as 
demonstrated in multiple myeloma (MM) 37. 
In MM, the defect in the cell death pathways 
is frequently due to an imbalance in the ex-
pression of the Bcl-2 family proteins. The 
Bcl-2 gene has been implicated in resistance 
to apoptosis induced by dexamethasone but 
not melphalan in patients with MM. Bcl-XL 
is expressed in most MM cell lines and cells 
from patients; increased expression is fre-
quently detected in the relapsed patient and 
correlates with resistance to chemotherapy. 
Mcl-1 is expressed in virtually all MM lines 
and fresh cells from patients. The induction 
of apoptosis in MM cells has been related to 
a decrease in the expression of Mcl-1 57. Also, 
for acute myeloid leukemia (AML), higher 
expression of Bcl-2, Bcl-XL, and Mcl-1 and 
lower expression of Bax increase resistance 
to apoptosis in CD34+ populations than in 
CD34- populations, mainly due to AML 58. 

Furthermore, increased expression of Bcl-
2 and Bcl-XL blocks doxorubicin-induced 
apoptosis. Mcl-1 levels are increased in pa-
tients with recurrent AML 59. 

Pro-apoptotic Bcl2 proteins 
Proapoptotic Bcl-2 proteins comprise 

two subfamilies: the BH1-4 proteins that 
share four different homology domains (Bcl-
2-associated X protein [Bax] and Bcl-2 ho-
mologous antagonist/killer [Bak] and the 
proteins with restricted homology to BH3. 
The BH3 domain is essential for apoptotic 
function 60. Among the members of the Bcl-2 
family that induce apoptosis, with bounded 
homology to the BH3 domain, the following 
proteins are grouped: Bcl-2-interacting pro-
tein BIM (Bim), Bcl-2 agonist of cell death 
(Bad), Bid, Bcl-2 adenovirus E1B 19kDa-
interacting protein 1 NIP3 (Bnip3), BMF, 
HRK, Noxa and p53 upregulated modulator 
of apoptosis (PUMA). These proteins are the 
largest subclass of the Bcl-2 protein family 
61. Bak protein is tightly bound to the outer 
membrane of the mitochondria even in the 
absence of an apoptotic signal, whereas Bax 
is localized primarily in the cytosol and only 
translocates to the mitochondria if an apop-
totic signal is activated. Bax and Bak acti-
vation depend on activated “BH3 one” pro-
apoptotic proteins. Bax and Bak act on the 
endoplasmic reticulum’s and nuclear mem-
branes’ surface; when activated in response 
to endoplasmic reticulum stress, they re-
lease Ca2+ from the endoplasmic reticulum 
into the cytosol. Bax and Bad are essential 
gateways for cell death through mitochon-
dria 61. Restricted homology to BH3 proteins 
provides the crucial link between the apop-
totic stimulus and the intrinsic apoptosis 
pathway; its BH3 domain binds to a long hy-
drophobic groove of the Bcl-2 antiapoptotic 
proteins and neutralizes or inhibits their ac-
tivity. In some cells, the extrinsic apoptotic 
pathway recruits the intrinsic pathway by 
amplifying the caspase cascade that kills the 
cell. In this way, Bid is the link between the 
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two pathways. Also, Bid, Bim, and PUMA can 
inhibit all Bcl-2 antiapoptotic proteins 62,63. 
Klee et al.64 have investigated mitochondrial 
membrane permeabilization, which depends 
not only on the canonical mitochondrial Bak 
and Bax pathway to activate the death pro-
gram. Therefore, these investigators have 
also found that the “only-BH3” molecules, 
Bim and PUMA, can induce the release of 
cytochrome c and apoptosis with the mere 
presence of Bak in the endoplasmic reticu-
lum 64. This pathway for transmitting apop-
totic signals from the endoplasmic reticu-
lum to mitochondria involves coordinated 
communication mediated by the calcium 
and ER1α/TRAF2 ER-stress surveillance ma-
chinery 61,63,65.

Second Mitochondria-derived Activator  
of Caspase (Smac / Diablo)

Second mitochondria-derived activa-
tor of caspase (Smac / Diablo) binds by its 
N-terminal end to the mitochondria and, in 
the intermembrane space, proteolyzes, leav-
ing free the domain that allows its union 
with the IAPs 66. The loss of mitochondrial 
potential simultaneously triggers the re-
lease of cytochrome-C and Smac/Diablo. 
Smac/Diablo, in the cytoplasm, is capable 
of binding to IAPs (XIAP, c-IAP1, c-IAP2, and 
survivin), inhibiting their function and en-
hancing caspase activation and triggering 
the mitochondrial apoptosis pathway 67. The 
release of Smac / Diablo is inhibited by Bcl-
2 and Bcl-xL 54. In MM cells, Smac plays a 
functional role in mediating the activation 
and apoptosis of Caspase-9 induced by dexa-
methasone treatment 37.

Caspase-independent pathways  
of apoptosis

Mitochondrial caspase - independent 
pathway

The loss of mitochondrial potential in-
creases the permeability of the mitochondri-
al membrane, and the result is the release of 

these proteins, such as AIF (apoptosis-induc-
ing factor) and Endonuclease G (Endo-G) 
that activate a caspase-independent apopto-
sis pathway 68. 

AIF (Apoptosis Inducing Factor)
Apoptosis-inducing factor (AIF) is a 

highly phylogenetically conserved protein, 
essential for embryonic development, which 
is synthesized in the form of an immature 
precursor; it is translocated to the mito-
chondria, and in the intermembrane space it 
is proteolyzed, the mature form has oxidase 
activity 69. In response to death signals, AIF 
leaves the mitochondria and travels through 
the cytosol to the nucleus, where it binds to 
DNA, causing chromatin condensation and 
DNA fragmentation into fragments of ap-
proximately 50 kb 16 (Fig. 6). AIF is neces-
sary to induce PARP-dependent death. The 
processing and activation of PARP occur in 
response to DNA damage. PARP initiates a 
signal in the nucleus that induces the re-
lease of AIF from the mitochondria. AIF then 
moves from the mitochondria to the nucleus 
and induces chromatin condensation and 
DNA fragmentation 69,70. 

Endonuclease G (Endo-G)
Endonuclease G (Endo-G) is an essen-

tial protein for mitochondrial DNA replica-
tion. It was isolated from the mitochondrial 
fraction treated with the proapoptotic active 
form of Bid: tBid. Once released to the cyto-
sol, it is transferred to the nucleus, where it 
fragments DNA, even in the presence of cas-
pase inhibitors (Fig, 6). Endo-G cooperates 
with exonuclease and DNase, facilitating 
DNA processing 71,72. Apoptotic endonucle-
ase acts cooperatively to fragment DNA and 
ensure the irreversibility of apoptosis. How-
ever, very little is known about the potential 
regulatory linkages between endonucleases. 
Therefore, deoxyribonuclease deactivation is 
caused by cutting. Also, alternative splicing 
of DNase I pre-mRNA skipping exon 4 occurs 
in response to overexpression of Endo-G in 



242 Fernández-Lázaro et al.

 Investigación Clínica 65(2): 2024

cells 16,72. Likewise, a strong correlation was 
identified between the expression levels of 
Endo-G and DNase I splice variants in human 
lymphocytes. In fact, T cells downregulate 
the mRNA levels of the active full-length DN-
ase I variant. They also upregulate the levels 
of the inactive spliced variant, which acts in 
a dominant-negative fashion 70,71. 

Necroptosis
Necroptosis is a form of programmed 

cell death since it is genetically regulated; 
it is characterized by cell inflammation, mi-
tochondria dysfunction, plasma membrane 
permeabilization, and the release of cyto-
plasmic content into the extracellular space, 
causing inflammatory reactions in the cells 
of the surrounding tissue. This form of cell 
death is also associated with mitochondrial 
reactive oxygen species (ROS) and, unlike 
apoptosis, does not involve DNA fragmen-
tation 73. Necroptosis has been reported to 
occur in a wide range of human diseases, in-
cluding retinal ischemia-reperfusion injury, 
acute pancreatitis, brain trauma, retinal 
detachment, and Huntington’s disease 73,74. 

In addition, necroptosis has been linked to 
models of inflammation, including intestinal 
inflammation and systemic inflammatory re-
sponse syndrome (SIRS) 75,76. Perhaps the de-
tailed knowledge of this cell death pathway 
can be used to develop drugs that temporar-
ily prevent or block this process to delay the 
death of some types of cells or, conversely, it 
could also serve to eliminate selectively, for 
example, tumor cells 77.

Activation Pathways of Necroptosis
Necroptosis is triggered as a form of 

immunity against pathogens, under poor 
conditions to trigger apoptosis. In necrop-
tosis, as in apoptosis, TNF activates TNFR1, 
which induces the activation of a serine/
threonine kinase interaction protein (RIP1), 
making integrating a joint inflammatory 
and necroptotic response possible 78. RIP3 
is activated upon phosphorylation by the 
serine/threonine kinase RIP1 79. Necropto-
sis is RIP3-dependent as RIPK3 protein ki-
nase activity determines whether cells die 
by apoptosis or necroptosis. Perhaps necrop-
tosis is fundamentally characterized by the 

Fig. 6. Proapoptotic factors as Cytochrome-C, Smac/Diablo, Endonuclease, and Apoptosis Inducing Factor 
are released from the mitochondria.

RIP3: Receptor-interacting serine/threonine-protein kinase 3; RIP1 Receptor-interacting serine/threonine-
protein kinase 1; FLIPs: FLICE-inhibitory proteins; FAAD: Fas-associated death domain protein.

In response to death signals, AIF leaves the mitochondria and moves through the cytosol to the nucleus, 
where it binds to the DNA, causing chromatin condensation and DNA fragmentation.
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activation of RIP1 or RIPK3, while the cas-
pase cascade is inhibited 79. Giampietri et al. 
80 have proposed a model that differentiates 
the production of cell death by apoptosis 
and by necroptosis; the dimerization of Cas-
pase-8 produces apoptosis while in necrop-
tosis it does not occur. The dimerization of 
C-Flip S and caspase-8 produces a reduction 
in caspase-8 activity, and it may not produce 
either apoptosis or necroptosis, finally, the 
heterodimerization of C-FLIPs and Caspase-8 
produces inhibition of Caspase-8 and leads 
to the production of necroptosis (Fig. 7).

Regulation Pathways of Necroptosis
Liu et al. 81 have shown that the Akt 

and mTOR pathways regulate necroptosis by 
inducing RIPK1 activation in neuronal cell 
death. Just as it has also been verified that 
necrostatin -1 is an inhibitor of all the bio-
chemical events carried out in this type of 
cell death. In addition, other investigators 
82 have reported that necroptosis is paired 
with a mixed lineage kinase domain-like pro-
tein (MLKL) gene, an important substrate 
of RIP3, and the plasma surface pores are 
constituted by said protein (Fig. 8). These 
pores cause the absorption of too much wa-

ter, so the cells ultimately burst. The block-
ade of MLKL activity leads to the inhibition 
of necroptosis 82. In this sense, Dondelinger 
et al. 82 have proposed that a domain of four 
activated MLKL molecules is required to 
induce its oligomerization and trigger cell 
death.

On the other hand, it has been found 
that phosphatidylinositol (PIP) recruits the 
MLKL protein to the plasma membrane. 
Of note, recombinant MLKL lacks positive 
charges and induces leakage of liposomes 
containing both PIP and BAX, supporting a 
model in which MLKL induces necroptosis 
by directly permeabilizing the plasma mem-
brane. Consequently, inhibition of PIP for-
mation specifically inhibits TNF mediated by 
necroptosis but not apoptosis 82. 

Autophagy
The term autophagy was introduced in 

1996 by De Duve and Wattiaux, who defined 
the vacuolization process for transporting 
intracellular material to lysosomes for deg-
radation 83. Autophagy is derived from the 
Greek auto and phagos; it literally means 
“self-feeding.” Its function mainly regulates 
intracellular homeostasis since cytoplasmic 
materials (long-lived proteins and damaged 
organelles) are degraded in lysosomes and 
recycled to produce new building blocks and 
maintain energy metabolism 84. From a mor-
phological point of view, autophagy has been 
classified as a form of programmed cell death 
associated with the massive accumulation of 
autophagosomes in the cytoplasm, which 
frequently, but not always, seems to be ac-
companied by increased blood flow; massive 
autophagy triggers caspase-independent, 
necrosis-like death 85. It has been shown that 
autophagy participates in natural processes 
such as growth, embryonic development, 
or aging. Also, it participates in the death 
that occurs in mammary cells after lactation 
and the death of some cancer cells that lack 
apoptotic modulators, such as Bax and Bak 
or caspases 85,86. Dysfunction of this process 
has been linked to cardiovascular and respi-

Fig. 7. Pathway of specific activation of necroptosis.
RIP3: Receptor-interacting serine/threonine-protein 

kinase 3; RIP1 Receptor-interacting serine/
threonine-protein kinase 1; FLIPs: FLICE-in-
hibitory proteins; FAAD: Fas-associated death 
domain protein.

Necroptosis signaling pathways mainly comprise hete-
rodimerization to c-FLIPs that reorganize the 
catalytic site procaspase-8, producing caspa-
se-8 inhibition, which induces necroptosis.
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ratory diseases, neurodegenerative diseases, 
metabolic diseases, and cancer 86,87. 

Autophagy is a type of programmed cell 
death since more than 30 genes have been 
identified in yeast that regulate autophagy, 
and it is seen as a survival mechanism to com-
bat environmental stress factors 88. Autopha-
gy could be induced in response to oxidative 
or metabolic stress and can also be induced 
through starvation, which is very commonly 
used in research 86. On the other hand, to 
demonstrate that cell death in an in vivo or 
in vitro model is caused by autophagy, it is 
necessary to demonstrate that said death is 
inhibited by agents interrupting the autopha-
gic pathway 88. These agents can be chemi-
cal (agents directed against VPS34), genetic 
(siRNA 3-methyl-adenine), or modulators of 
autophagy (AMBRA 1, ATG 5, beclin) 89. 

Types of autophagy
Three types of autophagy are identified: i) 

macroautophagy; ii) microautophagy; iii) chap-
erone-mediated autophagy 84. The macroau-
tophagy process, as described by Kwanten et al. 
88 begins with the  formation of a phagophore, 
a double membrane structure (also known as 
an isolation membrane) that sequesters cyto-

plasmic material (long-lived proteins and or-
ganelles), which subsequently elongates to cre-
ate an autophagosome. The autophagosome 
fuses with a lysosome to form an autolysosome, 
where its contents will be degraded by lyso-
somal proteases (e.g., cathepsins) and other 
hydrolytic enzymes 90,91. According to Kwanten 
et al. 88, phagophore formation is regulated by 
the ULK1 complex (initiation), which is under 
the control of the mammalian target of ram-
pamycin (mTOR) complex and the beclin-1/
VSP34 interaction complex (nucleation). Two 
large, conjugated ubiquitin-like complexes 
are responsible for double membrane elonga-
tion: light chain 3 (LC3)-II and ATG5-Atg12-
ATG16L1. ATG7 is one of the proteins required 
to form both elongation complexes. Autopha-
gosomes are generated on or in the vicinity of 
the endoplasmic reticulum. However, it is not 
clear whether the ER membrane is used di-
rectly for autophagosome formation. Recent 
studies suggest that additional  membranes 
derived from the Golgi complex, mitochondria, 
and the plasma membrane also  contribute 
to autophagosome formation 90,91. Therefore, 
autophagosome  formation involves  multiple 
and complex processes 84. Macroautophagy is 
considered to play the most critical role in au-
tophagy 92 (Fig. 9). 

Fig. 8. Recruitment of Mixed Lineage Domain-Like Protein Kinase by Phosphatidylinositol. Pathway to the 
plasma membrane.

MLKL: Mixed Lineage Domain-Like Protein Kinase
The MLKL protein has become a specific and crucial protein. The 4-Helical Bundle Domain (4HBD) in the 

N-terminal region of MLKL is required to induce its oligomerization. and trigger cell death.
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Microautophagy process is considered 
when a small portion of the cytoplasm is di-
rectly involved by the lysosome / late endo-
some (Fig. 10). Autolysosome formation is 
mediated by the accumulation of small mem-
brane structures that envelop portions of 
the cytoplasm. Phagophores are not formed, 
and membrane structures invaginate direct-
ly into lysosomes, where degradation occurs 
by direct absorption of cytoplasmic cargo. 

In Chaperone-Mediated Autophagy 
(CMA), the proteins to be degraded are 
delivered selectively to lysosomes; they are 
recognized by heat shock-like proteins 70 
(HSC70) and by co-chaperones; proteins 
in the degradation phase are internalized 
through lysosomal membrane-associated 
protein 2A (LAMP2A) 91,92 (Fig. 11). 

Autophagy: a selective process
Degradation in the autophagy process 

was believed to be non-selective; however, it 
has been determined that there are selective 
pathways to digest specific components, such 
as “mitophagy” or selective autophagy of mi-
tochondria 93, “peroxyphagy” (peroxisomes), 
“ribophagy” (ribosomes) or “xenophagy” 
(invading microbes), this phenomenon is 
called selective autophagy, and in the case 
of mitochondria, it serves to maintain their 
homeostasis 70,84. Thus, macroautophagy 
can be non-selective (random uptake of in-
tracellular material) and selective (specific 
load capture). The morphological and bio-
chemical characteristics of autophagy and 
apoptosis are different. In this regard, cells 
undergoing autophagy show an increase in 
autophagic vesicles (autophagosomes and 
autophagolysosomes). While chromatin 
condensation is partial in autophagic cells, 
DNA fragmentation does not occur. The two 
processes, autophagy and apoptosis, are not 
always mutually exclusive and can occur si-
multaneously in the same type of cells 91. 

In summary, homeostasis is maintained 
between cells produced by mitosis and cell 
death in the human body. In this sense, this 
study is a narrative review that reports scien-
tific research in which an attempt has been 
made to group programmed cell deaths, 
explaining the molecular mechanisms that 
involve structural and functional proteomic 
pathways that intervene by inducing and 
inhibiting each one of the proteomic path-
ways. In our study, caspase-dependent pro-

Fig. 9. Macroautophagy process from isolation membrane to autolysosome.
In the autolysosome, the inner membrane and luminal content of the autophagic vesicle are degraded by 

lysosomal enzymes that act optimally within this acidic compartment.

Fig. 10. Endosomes result from the microautopha-
gy process.

Microautophagy is conserved from yeast to mam-
mals and contributes to the degradation of 
organelles (e.g., peroxisomes, ER, nucleus), 
protein complexes such as the proteasome, 
and single proteins.
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grammed cell deaths and caspase-indepen-
dent programmed cell deaths are described. 
Although classifying and describing pro-
grammed cell death processes is somewhat 
complex, depending on which aspects are 
analyzed, their grouping and knowledge of 
the factors that trigger cell death vary great-
ly. This study could offer the basis for the de-
sign of new pharmacological treatments and 
discover new potential molecular biomarkers 
for early diagnosis that serve to cure or mod-
ulate the course of some diseases. For this, 
it is necessary to understand the proteomic 
signaling mechanisms of programmed cell 
death since their alteration contributes to a 
wide variety of diseases, one of which is can-
cer, which constitutes a global public health 
problem due to its high mortality.
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