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Abstract. Arsenic exposure is associated with male reproductive toxicity, in-
cluding impaired spermatogenesis, reduced sperm quality, and disrupted hormone 
levels. Rutin, a natural flavonoid, has demonstrated protective effects in various or-
gans owing to its antioxidant, anti-inflammatory, and antiapoptotic properties. This 
study aimed to assess the efficacy of rutin in ameliorating testicular toxicity caused 
by sodium arsenite in laboratory rats. Sprague-Dawley rats were randomly assigned 
to normal, arsenic control, rutin (25, 50, and 100 mg/kg), and Co-enzyme Q10 (10 
mg/kg) treatment groups. Testicular damage was induced by oral administration of 
sodium arsenite (10 mg/kg, for two days). Rutin and Co-enzyme Q10 were adminis-
tered orally for 15 and seven days, respectively. The serum hormone levels, sperm pa-
rameters, testicular mitochondrial enzymes, oxidative stress markers, inflammatory 
cytokines, apoptotic proteins, and histopathology were assessed. Arsenic exposure 
significantly decreased (p<0.001) sperm parameters (count, motility, and viabil-
ity), serum hormone levels (follicle-stimulating hormone, luteinizing hormone, and 
testosterone), and mitochondrial enzyme activity. Rutin (50 and 100 mg/kg) sig-
nificantly (p<0.01 and p<0.001) attenuated arsenic-induced alterations in a dose-
dependent manner, improving organ weight, sperm parameters, and hormone lev-
els. Rutin also improved mitochondrial complex activity and testicular architecture. 
In contrast, elevated oxidative stress (reduced glutathione, superoxide dismutase, 
nitric oxide, and lipid peroxidation), inflammation (tumor necrosis factor-alpha, 
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Rutina, un agente terapéutico potencial para el daño testicular 
inducido por arsénico: Efecto antioxidante, antinflamatorio,  
y anti-apoptótico.

Invest Clin 2025; 66 (4): 408 – 425

Palabras clave: Apoptosis; Arsénico; Inflamación; Rutina; Espermatogénesis; Toxicidad 
Testicular.

Resumen. La exposición al arsénico se asocia con toxicidad reproductiva mas-
culina que incluye alteración de la espermatogénesis, reducción de la calidad del 
esperma y alteración de los niveles hormonales. La rutina, un flavonoide natural, ha 
demostrado efectos protectores en varios órganos debido a sus propiedades antio-
xidantes, antiinflamatorias y antiapoptóticas. El propósito del trabajo fue evaluar la 
eficacia de la rutina para reducir la toxicidad testicular causada por el arsenito de 
sodio en ratas de laboratorio. Ratas (Sprague-Dawley) fueron asignadas aleatoria-
mente a grupos de tratamiento normal, control de arsénico, rutina (25, 50 y 100 
mg/kg) y coenzima Q10 (10 mg / kg). El daño testicular se indujo mediante la ad-
ministración oral de arsenito de sodio (10 mg/kg, 2 días). La rutina y la coenzima 
Q10 se administraron por vía oral durante 15 y 7 días, respectivamente. Se evalua-
ron los niveles séricos de hormonas, los parámetros de los espermatozoides, las enzi-
mas mitocondriales testiculares, los marcadores de estrés oxidativo, las citocinas in-
flamatorias, las proteínas apoptóticas y la histopatología. La exposición al arsénico 
disminuyó significativamente (p<0,001) los parámetros espermáticos (recuento, 
motilidad y viabilidad), y los niveles séricos de hormonas (hormona estimulante del 
folículo, hormona luteinizante y testosterona) y la actividad de las enzimas mitocon-
driales. La rutina (50 y 100 mg/kg) atenuó significativamente (p<0,01 y p<0,001) 
las alteraciones inducidas por el arsénico de manera dosis-dependiente, mejorando 
el peso de los órganos, los parámetros espermáticos y los niveles hormonales. La 
rutina también mejoró la actividad del complejo mitocondrial y la arquitectura tes-
ticular, mientras que el estrés oxidativo elevado (glutatión reducido y superóxido 
dismutasa, óxido nítrico y peroxidación lipídica), la inflamación (factor de necrosis 
tumoral alfa, interleucina-6 e interleucina-1β) y la apoptosis (expresión de proteínas 
caspasa-3 y caspasa-9) mejoraron con la rutina. En conclusión, la rutina demostró 
efectos protectores significativos contra la toxicidad testicular inducida por el ar-
senito de sodio en ratas al reducir el estrés oxidativo, la inflamación y la apoptosis. 
Estos hallazgos sugieren que la rutina tiene potencial terapéutico para mitigar la 
toxicidad reproductiva asociada al arsénico.

           Received: 12-08-2025     Accepted: 22-09-2025

interleukin-6, and interleukin-1β), and apoptosis (caspase-3 and caspase-9 protein 
expression) were ameliorated by rutin. In conclusion, rutin demonstrated signifi-
cant protective effects against sodium arsenite-induced testicular toxicity in rats by 
reducing oxidative stress, inflammation, and apoptosis. These findings suggest that 
rutin has therapeutic potential in mitigating arsenic-related reproductive toxicity.
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INTRODUCTION

Arsenic is a metalloid commonly found 
in the environment, known for its toxicity 
and important public health effects 1,2. It 
mainly impacts populations through con-
taminated drinking water, often from natural 
sources and human activities such as indus-
trial discharge and the use of arsenic-based 
pesticides 3,4. According to the World Health 
Organization (WHO), more than 140 million 
people worldwide are exposed to arsenic-
contaminated water exceeding the safe limit 
of 10 µg/L 5. Furthermore, long-term expo-
sure to arsenic has been associated with nu-
merous health problems, including cancer 
and various non-cancerous conditions like 
cardiovascular diseases, diabetes, and repro-
ductive issues 6,7. Sodium arsenite is recog-
nized for causing testicular toxicity through 
mechanisms such as oxidative stress, apop-
tosis, and inflammation. Researchers believe 
that inflammation, oxidative/nitrosative 
stress, and apoptosis are key factors in arse-
nic-induced testicular damage 6,8. 

The impact of arsenic toxicity on re-
productive health has become an increas-
ing concern, particularly regarding the male 
reproductive system 9. Arsenic exposure is 
linked to various reproductive problems, 
including male infertility, decreased sperm 
quality, and disruptions in testosterone pro-
duction. This results in reduced weights of 
reproductive organs, more sperm abnormali-
ties, and apoptosis in testicular cells 10. The 
harmful effects of arsenic on male fertility 
involve several mechanisms, such as inter-
ference with steroidogenesis and mitochon-
drial dysfunction in reproductive tissues 9. 
These disruptions lead to lower testoster-
one levels, decreased sperm count, and ab-
normal sperm morphology 11. Additionally, 
changes in spermatogenesis and reduced 
gonadotropin levels have been observed, fur-
ther emphasizing the reproductive risks of 
arsenic 3. Moreover, arsenic exposure causes 
increased production of reactive oxygen spe-
cies (ROS), indicating the role of oxidative 

stress in its genotoxic effects 12. Research-
ers have documented that testicular toxicity 
caused by sodium arsenite is partly due to its 
ability to induce apoptosis through the p53 
pathway, as shown in zebrafish studies where 
sodium arsenite exposure elevated apoptosis 
markers and decreased global DNA methyla-
tion 13. Furthermore, experiments with Cae-
norhabditis elegans demonstrated that sodi-
um arsenite can cause cell cycle arrest and 
germline apoptosis, both of which depend on 
concentration and exposure time 12.

Several protective agents have been stud-
ied to reduce testicular toxicity caused by so-
dium arsenite. Melatonin has been shown to 
decrease arsenic-induced testicular cell death, 
oxidative stress, and tissue damage by boost-
ing antioxidant enzyme activity and lowering 
lipid peroxidation 14. Similarly, Salvia hispani-
ca (chia seeds) proved effective in decreasing 
testicular toxicity by improving sperm quality, 
serum sex hormone levels, and antioxidant en-
zyme activity, thanks to its flavonoid content 
and antioxidant properties 15. Hesperidin and 
lipoic acid were also tested for their protec-
tive effects against liver, kidney, and testicular 
toxicity when administered with sodium arse-
nite16. Rutin is a natural flavonoid with a wide 
range of pharmacological benefits, including 
antioxidant, antimicrobial, antifungal, anti-
allergic, anti-cancer, anti-inflammatory, and 
antiapoptotic effects 4,17-22. Additionally, rutin 
has been shown to help manage neurodegen-
erative diseases and metabolic conditions like 
diabetes due to its cell-protective effects 19. Its 
protective properties have been documented 
in the liver, kidneys, and heart due to its anti-
inflammatory, antioxidant, and antiapoptotic 
actions, making it a candidate for protecting 
these organs from toxic agents 4. However, the 
impact of rutin on testicular toxicity caused 
by sodium arsenite has not yet been studied. 
Given its protective effects on other organs, ru-
tin might provide similar benefits in reducing 
testicular damage from sodium arsenite. This 
study examined the effectiveness of rutin in al-
leviating testicular toxicity caused by sodium 
arsenite in male rats.
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MATERIALS AND METHODS

Experimental design
Rats (male, Sprague-Dawley, weighing 

200-220 g, sourced from the animal house 
of Shaanxi Kangfu Hospital, China) were 
randomly divided into the following groups 
(n=6 per group): normal, arsenic control 
(As), rutin (Sigma Chemical Co., St Louis, 
Missouri, United States; 25, 50, and 100 
mg/kg), and Co-enzyme Q10 (Medicines Pvt. 
Ltd. Mumbai, India; 10 mg/kg). Testicular 
damage was induced in rats (except the nor-
mal group) by oral administration of sodium 
arsenite (Otto Chemicals, India; 10 mg/kg, 
for two days) 23,24. Rats in the arsenic control 
and normal groups were treated with double-
distilled water (10 mL/kg). Three different 
dosages of rutin (25, 50, and 100 mg/kg) 
were selected based on previous studies 21,22 
and were administered orally for 15 days. Co-
enzyme Q10 was administered for seven con-
secutive days before arsenite administration 
and continued for up to 15 days. On the 16th 
day, the rats were put under anesthesia us-
ing ether, and blood was drawn through ret-
ro-orbital puncture. Each blood sample was 
placed in a separate vial for analysis of se-
rum parameters. Serum follicle-stimulating 
hormone, luteinizing hormone, and testos-
terone levels were quantified according to 
the manufacturer’s instructions for the rat-
specific ELISA kit (Thermo Scientific, Rock-
ford, IL, USA). The rats were euthanized by 
carbon dioxide asphyxiation, and the testes 
were rapidly removed and stored at -80°C for 
biochemical parameters. Other organs, such 
as the epididymis and prostate, were isolated 
and weighed. The epididymal sperm count 
and motility were determined according to a 
previously reported method 25.

Biochemical estimation of testis  
homogenate

Supernatant of the tissue homogenate 
was employed to estimate lipid peroxidation 
[malondialdehyde (MDA) content], nitric 
oxide (NO content), reduced glutathione 

(GSH), and superoxide dismutase (SOD)] 
as described previously 26-29. Testicular mito-
chondrial enzyme activities, including Com-
plex I (nicotinamide-adenine dinucleotide 
(NADH) dehydrogenase activity), Complex 
II (succinate dehydrogenase (SDH) activity), 
Complex III (mitochondrial redox activity), 
and Complex IV (cytochrome oxidase assay) 
were estimated according to previously re-
ported methods 30,31.

Testicular interleukins (interleukins 
(ILs); IL-6 (ERA31RB) and IL-1β (BMS630)) 
and tumor necrosis factor-alpha (TNF-α; 
ERA56RB) were quantified in the testis ho-
mogenate using Enzyme-linked immunosor-
bent assay (ELISA) kits (Thermo Scientific, 
Rockford, IL, USA). Briefly, 500 mg of testis 
tissue samples were homogenized with a me-
chanical homogenizer in 5 ml of phosphate-
buffered saline at 3000 rpm. The homoge-
nate was centrifuged for 30 min at 20,000 
rpm (4°C) in a cryo centrifuge (Eppendorf), 
and the supernatant was used to determine 
ILs and TNF-α. Briefly, the quantification of 
ILs and TNF-α was performed using the Ther-
mo Scientific Rat ILs and TNF-α immunoas-
say kit, following the instructions provided. 
The Rat ILs and TNF-α immunoassay was a 
4.5 h solid phase designed to measure rat 
ILs and TNF-α levels. The assay employed a 
sandwich enzyme immunoassay principle. A 
monoclonal antibody specific for rat ILs and 
TNF-α was pre-coated on the microplates. 
Standards, control, and samples were pipet-
ted into the wells, and the immobilized an-
tibody thus bound any rat ILs or TNF-α pres-
ent in the sample. After washing away the 
unbound substance, an enzyme-linked poly-
clonal antibody specific for rat ILs or TNF-α 
was pipetted into the microtitre wells. Any 
unbound antibody was washed off, and then 
a substrate solution was added to the wells. 
The enzymatic reaction produced a blue 
product that turned yellow upon addition of 
the stop solution. The intensity of the gener-
ated color was measured and was proportion-
al to the amount of rat ILs or TNF-α bound 
in the initial steps. A standard curve was run 
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on each assay plate using recombinant ILs or 
TNF-α in serial dilutions. The sample values 
were then read and calculations made ac-
cording to the standard curve. Values were 
expressed as means ± S.E.M. The levels of 
ILs or TNF-α were expressed as units per mg 
of gastric tissue.

The protein expression of caspase-3 and 
caspase-9 was assessed by western blot in the 
testis 32-34. Briefly, the testis was sonicated in 
Tissue Protein Extraction Reagent (Thermo 
Fisher Scientific, Inc., Mumbai, Maharash-
tra, India). The lysates were centrifuged at 
10,000 × g for 10 min at 4°C. Protein con-
centration was determined using a Bicin-
choninic Acid (BCA) assay kit (Beyotime 
Shanghai, China) on ice for 30 min. Equal 
amounts of extracted protein samples (50 
μg) were separated by 10% SDS-PAGE (sodi-
um dodecyl sulfate-polyacrylamide gel elec-
trophoresis) and transferred onto polyvinyli-
dene difluoride membranes. The membranes 
were blocked with 5% non-fat dry milk at 
37°C for 1 hr and incubated overnight at 4°C 
with the primary antibodies recognizing cas-
pase-3 (ab4051; 1/200 dilution; 31 kDa) and 
caspase-9 (ab202068; 1/2000 dilution; 46 
kDa; Abcam, Cambridge, MA, USA). In ad-
dition, an anti-rabbit horseradish-linked sec-
ondary antibody (goat anti-rabbit IgG H&L; 
ab97051) was used, which was incubated at 
37°C for 2 hr. Protein bands were visualized 
using the Chemiluminescent kit (Bio-Rad 
Laboratories, Inc., Mumbai, Maharashtra, 
India), and glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH; EPR6256, ab128915; 
1/10000 dilution; 36 kDa) served as the 
loading control.

Histopathological analysis of testis
Other testis samples were preserved in 

10% formalin for 24 hours. These samples 
underwent dehydration and were immersed 
in xylene for one hour, repeated three times, 
followed by treatment with ethyl alcohol at 
concentrations of 70%, 90%, and 100% for 
two hours. The infiltration and impregnation 
process involved treating the samples with 

paraffin wax twice, with each session lasting 
1 hour. The tissue samples were then sliced 
into sections with a thickness of 3-5μm and 
stained using hematoxylin and eosin (H&E). 
The sections were mounted on slides with 
Distrene Pthalate Xylene (DPX) serving as 
the mounting medium. A light microscope 
was used to examine the sections for histo-
pathological characteristics and cell infiltra-
tion. The observed changes in histological 
features were categorized into grades rang-
ing from 0 to 4 according to a previously re-
ported method 35.

Statistical analysis
The data are presented as mean ± 

standard error of the mean (SEM). Graph-
Pad Prism 5.0 software (GraphPad, San Di-
ego, CA, USA) was utilized for data analysis. 
Biochemical parameter data were examined 
using one-way analysis of variance, followed 
by Tukey’s multiple range test for paramet-
ric results, while the Kruskal-Wallis test was 
used for non-parametric outcomes. A p of 
less than 0.05 was deemed statistically sig-
nificant. Correlation coefficients were calcu-
lated using a two-sided Fisher’s test.

RESULTS

Attenuation of arsenic-induced alteration 
in body weight and organ weights by rutin

Table 1 presents the descriptive results 
for various body and organ weight parame-
ters across the different treatment groups. 
The arsenic (As) control group had a signifi-
cant reduction (p<0.001) in organ weights 
(testes, epididymis, and prostate) and body 
weight compared with the normal group. 
CoQ treatment resulted in a significant im-
provement (p<0.001) in body weight and 
organ weights compared to the arsenic con-
trol group. Rutin (50 and 100 mg/kg) ad-
ministration also effectively (p<0.01 and 
p<0.001) and dose-dependently increased 
the body, testes, epididymis, and prostate 
weights relative to the arsenic-exposed 
group.
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Attenuation of arsenic-induced alteration 
in sperm parameters by rutin

The arsenic control group showed a 
significant reduction (p<0.001) in cell 
count and motility compared to the con-
trol group. However, the percentage of dead 
and abnormal sperm was markedly higher 
(p<0.001) in the arsenic control group 
than that in the normal group. Treatment 
with CoQ resulted in significant improve-
ments (p<0.001) in sperm count and mo-
tility compared with the arsenic control 
group. Furthermore, CoQ administration 
resulted in a more effective (p<0.001) re-
covery of the percentage of dead and abnor-
mal sperm than arsenic control. Rutin (50 
and 100 mg/kg) treatment demonstrated a 
marked (p<0.01 and p<0.001) and dose-
dependent improvement in sperm param-
eters relative to the arsenic-exposed group 
(Table 1).

 
Attenuation of arsenic-induced alteration 
in serum follicle-stimulating hormone, 
luteinizing hormone, and testosterone 
levels by rutin

Exposure to sodium arsenite significant-
ly decreased (p<0.001) the levels of serum 
follicle-stimulating hormone, luteinizing hor-
mone, and testosterone in the arsenic con-
trol group compared with the normal group. 
Treatment with CoQ and rutin (25 mg/kg) 
had a minimal impact on serum luteinizing 
hormone, follicle-stimulating hormone, and 
testosterone hormone levels. However, rutin 
(50 and 100 mg/kg) treatments demonstrat-
ed effective, dose-dependent increases in all 
three hormones (p<0.01 and p<0.001, re-
spectively) compared with the arsenic control 
group (Table 2).

Attenuation of arsenic-induced alteration 
in testicular mitochondrial complex 
activities by rutin

Arsenic exposure led to a significant 
reduction (p<0.001) in mitochondrial com-
plex activity compared to the normal group. 

The results presented in Table 2 demonstrate 
that both CoQ and rutin (50 and 100 mg/
kg) significantly improved mitochondrial 
function in arsenic-exposed rats. Specifical-
ly, rutin (50 and 100 mg/kg) administration 
led to notable (p<0.01 and p<0.001) and 
dose-dependent increases in mitochondrial 
complex activities compared with the arse-
nic control group. However, rutin (25 mg/
kg) did not show any significant potential to 
improve mitochondrial function or mitigate 
arsenic-induced damage.

Attenuation of arsenic-induced alteration 
in testicular oxido-nitrosative stress  
by rutin

The results presented in Table 3 show 
the effects of rutin treatment on testicular 
oxido-nitrosative stress. Arsenic exposure 
caused a substantial (p<0.001) decrease in 
GSH and SOD levels and a marked (p<0.001) 
elevation in nitric oxide and MDA levels in 
the arsenic control group compared to the 
normal group. CoQ treatment significantly 
(p<0.001) improved GSH and SOD levels 
and effectively reduced (p<0.001) nitric ox-
ide and MDA levels compared with the arse-
nic control group. Rutin (25 mg/kg) treat-
ment showed minimal effects in attenuating 
arsenic-induced elevated testicular oxido-
nitrosative stress compared with the arsenic 
control group. However, rutin (50 and 100 
mg/kg) demonstrated marked (p<0.01 and 
p<0.001) and dose-dependent protective ef-
fects, reflected by restored antioxidant sta-
tus (GSH and SOD levels) and reduced oxi-
dative stress markers (nitric oxide and MDA) 
to normal levels (Table 3).

Attenuation of arsenic-induced alteration 
in testicular inflammatory markers 
activities by rutin

The results in Table 3 show significant 
differences in inflammatory cytokine lev-
els between the normal and arsenic control 
groups. The arsenic control group exhibited 
markedly elevated (p<0.001) levels of ILs 
(IL-6 and IL-1β) and TNF-α compared with 
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the normal group. CoQ treatment substan-
tially (p<0.001) lowered ILs (IL-6 and IL-
1β) and TNF-α levels compared to the arse-
nic control group. Rutin (50 and 100 mg/
kg) administration resulted in effective 
(p<0.01 and p<0.001) and dose-dependent 
reductions in cytokine levels compared with 
the arsenic control group. However, a lower 
dose of rutin (25 mg/kg) did not reduce cy-
tokine levels to levels comparable to those of 
the arsenic control group, indicating failure 
to ameliorate arsenic-induced inflammation 
(Table 3).

Attenuation of arsenic-induced alteration 
in testicular caspase-3 and caspase-9 
protein expressions by rutin

Fig. 1 illustrates the impact of arsenic 
exposure on markers of apoptosis in the tes-
tes, along with their correlation with sperm 
count. The caspase-3 and caspase-9 pro-
tein expression was significantly increased 
(p<0.001) in the arsenic control group 
compared with that in the normal group. 
The substantial elevation in caspase-3 and 
caspase-9 protein expression was markedly 
downregulated (p<0.001) by CoQ treat-

ment compared to the arsenic control 
group. Treatment with rutin (50 and 100 
mg/kg) significantly (p<0.01 and p<0.001) 
and dose-dependently reduced both cas-
pase-3 and caspase-9 relative densities com-
pared to the arsenic control (Figs. 1A and 
1B). Furthermore, Figs. 1C and  1D reveal 
a strong inverse correlation between sperm 
count and the relative densities of caspase-3 
(R² = 0.8168, p<0.001) and Caspase-9 (R² 
= 0.7075, p<0.01), respectively, indicating 
that lower sperm counts are associated with 
increased apoptotic activity.

Attenuation of arsenic-induced alteration 
in testicular histopathology by rutin

Fig. 2 illustrates the histopathologi-
cal changes in rat testicular tissue after 
exposure to arsenic and their ameliora-
tion across different treatment groups. In 
the normal group (Fig. 2A), testicular ar-
chitecture appeared normal, with intact 
seminiferous tubules containing organized 
spermatogenic cells and healthy Leydig 
cells, and no evidence of necrosis. However, 
it showed mild inflammation (indicated by 
black arrows). In contrast, the arsenic con-

Table 3. Attenuation of arsenic-induced alteration in testicular oxido-nitrosative stress  
and inflammatory markers by rutin.

Parameters Normal As Control CoQ (10) R (25) R (50) R (100)

SOD (U/mg  

of protein) 13.20 ± 1.10 5.19 ± 0.93### 10.66 ± 0.87*** 5.45 ± 0.61 8.91 ± 0.93** 10.66 ± 0.96***

GSH (μg/mg  

of protein) 13.76 ± 0.64 3.90 ± 0.62### 11.04 ± 0.59*** 5.36 ± 0.50 8.31 ± 0.76** 10.43 ± 0.56***

MDA (nM/mg  

of protein) 0.46 ± 0.10 3.14 ± 0.18### 1.97 ± 0.18*** 3.00 ± 0.27 2.11 ± 0.04** 1.59 ± 0.19***

NO (µg/mg  

of protein) 119.00 ± 9.08 284.00 ± 13.96### 143.90 ± 9.97*** 261.40 ± 13.64 222.10 ± 12.14** 167.90 ± 9.82***

TNF-α (pg/mL) 157.00 ± 8.15 409.70 ± 12.69### 222.80 ± 14.07*** 377.20 ± 14.06 330.30 ± 8.02** 253.70 ± 12.06***

IL-1β (pg/mL) 17.28 ± 3.86 72.12 ± 1.85### 30.57 ± 2.76*** 68.46 ± 1.62 48.95 ± 2.70** 42.78 ± 2.41***

IL-6 (pg/mL) 40.50 ± 5.53 152.60 ± 5.18### 59.41 ± 9.32*** 155.50 ± 6.21 130.40 ± 7.87** 71.78 ± 7.13***

Data analysis: One-way ANOVA (post-hoc test: Tukey’s multiple range test). Data are reported as mean ± SEM 
(n=6). Statistically significant compared with ###normal rats, ** and ***As control rats. ###p < 0.001, **p < 0.01 
and ***p < 0.001. Arsenic (As), Co-enzyme Q10 (CoQ (10)), Glutathione (GSH), Interleukin-1 beta (IL-1β), Inter-
leukin-6 (IL-6), Malondialdehyde (MDA), Nitric Oxide (NO), Rutin (R), Superoxide Dismutase (SOD), and Tumor 
Necrosis Factor-alpha (TNF-α).
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trol group (Fig. 2B) demonstrated histo-
logical aberrations characterized by severe 
inflammatory infiltration (black arrows), 
necrosis (red arrows), vacuolated spermato-
genic cells (blue arrows), and Leydig cell 
damage, indicating arsenic-induced toxic-
ity. The quantitative histopathological score 
in Fig. 2G supports these visual observa-
tions, as the arsenic control group exhibited 
significantly (p<0.001) elevated scores for 

inflammatory infiltration, necrosis, Leydig 
cell damage, and vacuolated spermatogenic 
cells than the normal group. Treatment with 
CoQ significantly reduced (p<0.001) these 
histopathological aberrations compared to 
the arsenic control group (Fig. 2C), sug-
gesting a protective effect against arsenic-
induced testicular injury. The rutin (25 mg/
kg) group showed a modest reduction in 
these scores, but this was not significantly 

Fig. 1. Attenuation of arsenic-induced alterations in testicular caspase-3 (A) and caspase-9 (B) protein ex-
pression by rutin. Correlation of sperm count with caspase-3 (C) and caspase-9 (D) protein expres-
sion. Data analysis: One-way ANOVA (post-hoc test: Tukey’s multiple range test). Data are reported as 
mean ± SEM (n=6). Statistically significant compared with ###normal rats, ** and ***As control rats. 
### p < 0.001, **p<0.01 and ***p<0.001. Correlation coefficients were determined using a two-sided 
Fisher’s test. Arsenic (As), Co-enzyme Q10 (CoQ (10)), Glyceraldehyde-3-Phosphate Dehydrogenase 
(GAPDH), and Rutin (R). Inflammatory infiltration (black arrow), necrosis (red arrow), and Leydig 
cells damage (blue arrow).
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Fig. 2. Attenuation of arsenic-induced alterations in testicular histopathology by rutin treatment. Repre-
sentative images of testes from each group (A-F). Quantitative analysis of arsenic-induced alterations 
in testicular histopathology and its attenuation by rutin (G). Data analysis: One-way ANOVA (post-hoc 
test: Kruskal–Wallis test). Data are reported as mean ± SEM (n=6). Statistically significant compared 
with ###normal rats, ** and ***As control rats. ###p < 0.001, **p < 0.01 and ***p < 0.001. Arsenic 
(As), Co-enzyme Q10 (CoQ (10)), Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), and Rutin (R).
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different from the higher rutin or CoQ doses 
(Fig. 2D). Treatment with rutin (50 and 100 
mg/kg) showed a significant (p<0.01 and 
p<0.001) reduction in arsenic-induced his-
tological aberrations in the testes, reflected 
in a decrease in inflammatory infiltration, 
necrosis, Leydig cell damage, and vacuolat-
ed spermatogenic cells compared to the ar-
senic control group (Figs 2E, 2F, and 2G). 

DISCUSSION

Arsenic exposure has extensive human 
health effects, with systemic toxicity affect-
ing multiple organs. It is particularly notori-
ous for its carcinogenic properties, causing 
skin, lung, and bladder cancers, among oth-
ers 6. However, it is crucial to evaluate its ad-
verse effects on male reproductive health as 
it directly affects male fertility. Arsenic expo-
sure impairs spermatogenesis and reduces 
sperm quality through oxidative stress and 
interference with crucial hormonal signaling 
pathways 11. Researchers have explored the 
protective efficacy of phytonutrients, such 
as lutein and α-lipoic acid, against arsenic-
induced oxidative damage in testicular tis-
sues 36. In the present study, rutin, an herbal 
intervention, was evaluated for its effects on 
arsenite-induced testicular damage, and the 
findings suggested that rutin ameliorated 
testicular toxicity through its anti-apoptot-
ic, anti-inflammatory, and mitochondrial-
protective effects in experimental rats.

Integrative proteomic and metabolo-
mic analyses have shown that arsenic ex-
posure significantly alters the proteome 
and metabolome in rat testes, affecting 
spermatogenesis and fertilization through 
disrupted signaling pathways 37. Sodium ar-
senite causes significant testicular damage 
primarily through oxidative stress, apop-
tosis, and inflammatory pathways. Studies 
have demonstrated that chronic exposure 
to sodium arsenite can lead to a significant 
decrease in both absolute and relative tes-
ticular weight 38. This reduction in testicu-
lar weight is attributed to the toxic effects 

of arsenic on testicular tissue and its inter-
ference with normal spermatogenesis and 
enzyme activities, including decreased acid 
phosphatase, sorbitol dehydrogenase, and 
17beta-hydroxy-steroid dehydrogenase activ-
ities, while increasing lactate dehydrogenase 
and gamma-glutamyl transpeptidase activi-
ties. Additionally, arsenite exposure leads to 
a notable increase in abnormal sperm forms, 
along with a decrease in sperm count and 
motility 38. Furthermore, arsenic is known to 
accumulate significantly in reproductive tis-
sues, underscoring its potential to cause pro-
longed toxic effects 38. This accumulation in 
the testes, epididymis, and prostate is linked 
to oxidative stress and histopathological al-
terations, indicating that arsenic’s effects 
are more profound at the cellular level 8,14. 
In the present study, administration of ru-
tin significantly attenuated arsenite-induced 
decreases in testes, epididymis, and prostate 
weights, suggesting its protective efficacy in 
reproductive organs.

Sodium arsenite led to decreased levels 
of serum testosterone, luteinizing hormone, 
and follicle-stimulating hormone, and to 
significant changes in sperm parameters, 
including reduced sperm count and motil-
ity, and an increase in abnormal sperm15. 
Serum hormone levels, such as testosterone, 
FSH, and LH, play crucial roles in regulating 
male reproductive function 39. Testosterone, 
which is primarily produced in the testes, 
is vital for normal male reproductive func-
tions and secondary sexual characteristics. 
FSH and LH, secreted by the pituitary gland, 
regulate testicular function, including ste-
roidogenesis and spermatogenesis 40. Chron-
ic exposure to arsenite is often associated 
with reduced testosterone levels owing to 
impaired testicular function. This can be at-
tributed to the direct cytotoxic effects of ar-
senite on Leydig cells, which are responsible 
for testosterone production. Additionally, al-
terations in hormone levels can disrupt the 
hypothalamic-pituitary-gonadal axis, leading 
to compensatory changes in LH and FSH lev-
els. In this study, arsenite-induced testicular 
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damage was reflected in changes in serum 
testosterone, FSH, and LH levels. However, 
administration of rutin restored the dimin-
ished levels of these hormones in the serum.

Oxidative stress plays a crucial role in 
arsenic-induced toxicity, impacting various 
biological systems and leading to significant 
health issues. Arsenic, a toxic metalloid, can 
cross cellular barriers and accumulate in tis-
sues, contributing to oxidative stress by gen-
erating ROS 41,42. ROS generation is central 
to the pathogenesis of arsenic toxicity, as it 
leads to mitochondrial dysfunction, a criti-
cal factor in neurotoxicity, and other health 
issues 43,44. Arsenic-induced oxidative stress 
leads to mitochondrial damage by disrupting 
the normal balance between antioxidants 
and pro-oxidants within cells. This disruption 
impairs mitochondrial membrane potential, 
promotes cytochrome c release, and triggers 
apoptosis through caspase activation42. On 
a systemic level, oxidative stress also causes 
chromosomal instability and DNA damage, 
leading to further complications, such as car-
cinogenesis and neurological disorders44-47. 
Moreover, arsenic exposure has been shown 
to deplete antioxidant capacities and elevate 
oxidative damage biomarkers, such as malo-
ndialdehyde (MDA) and nitric oxide, owing 
to the heightened oxidative environment48,49. 
These changes underline the oxidative stress 
mechanism as a cornerstone of arsenic tox-
icity, which affects various systems, includ-
ing the reproductive system 50. Therapeutic 
strategies to combat arsenic-induced oxida-
tive stress focus on enhancing mitochondrial 
function and increasing antioxidant defense. 
Acetyl-L-carnitine (ALC), for instance, has 
been shown to counteract arsenic-induced 
oxidative stress by improving antioxidant 
mechanisms and mitochondrial function, 
thus offering a potential therapeutic pathway 
42. Other antioxidants, such as curcumin and 
apigenin, also exhibit protective effects by 
reducing ROS and supporting cellular anti-
oxidant systems, highlighting their possible 
roles in mitigating arsenic toxicity51,52. In the 
present investigation, arsenic-induced toxic-

ity, associated with elevated oxidative stress, 
contributed to various cellular and systemic 
damage, as reflected by diminished testicu-
lar mitochondrial enzyme activity. However, 
rutin treatment effectively increased tes-
ticular glutathione and superoxide levels 
and reduced malondialdehyde and nitric ox-
ide levels, suggesting its protective effects 
against arsenic-induced mitochondrial dys-
function, potentially by mitigating oxidative 
stress and enhancing mitochondrial energy 
production.

Inflammation is a significant contribu-
tor to arsenic-induced testicular toxicity. 
Pro-inflammatory cytokines, such as TNF-α 
and interleukins, mediate this process. 
TNF-α induces apoptosis and promotes in-
flammatory responses 53. Inflammation 
induced by TNF-α can activate various sig-
naling pathways, culminating in oxidative 
stress and tissue damage 54-56. It has been ob-
served that arsenic exposure results in the 
upregulation of inflammatory mediators, 
such as TNF-α and interleukins, contribut-
ing to testicular damage 57. Furthermore, 
Caspases 3 and 9 play crucial roles in the 
apoptotic pathways underlying arsenic-in-
duced testicular toxicity. Caspase-9 is part 
of the intrinsic or mitochondrial apoptosis 
pathway, which is often activated by cellular 
stressors, including toxins such as arsenic. 
It is responsible for activating downstream 
effector caspases, including caspase-3 58,59. 
Caspase-3 then executes apoptosis by cleav-
ing cellular substrates, leading to system-
atic breakdown of cellular components and 
cell death 60-62. In arsenic-induced testicu-
lar toxicity, activation of these caspases is 
indicative of enhanced apoptotic activity, 
contributing to the observed tissue damage 
and dysfunction 57. In the current study, 
arsenic-induced elevated inflammation and 
apoptosis, mediated by cytokines such as 
TNF-α and enzymes such as caspases 3 and 
9, highlighted the development of arsenic-
induced testicular toxicity. However, rutin 
treatment mitigated the toxic effects in-
duced by chronic exposure to arsenic via 
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the amelioration of these pathways, sug-
gesting its therapeutic potential against 
arsenic-induced testicular toxicity.

This study has some limitations. First, 
the study focused on acute arsenic exposure 
(two consecutive days), which may not re-
flect the effects of chronic, long-term expo-
sure often observed in human populations. 
Second, the study only used sodium arsenite, 
whereas environmental arsenic exposure of-
ten involves multiple arsenic species. Third, 
this study did not address the bioavailabil-
ity and metabolism of rutin in rats, which 
could affect its efficacy in humans. Lastly, 
the study focused on rutin alone and did not 
explore its potential synergistic effects with 
other protective agents.

As a conclusion, rutin demonstrated 
significant protective effects against sodium 
arsenite-induced testicular toxicity in rats. 
Rutin ameliorated arsenic-induced damage 
by reducing oxidative stress, inflammation, 
and apoptosis in testicular tissue, while im-
proving sperm parameters and hormone lev-
els. These findings suggest that rutin may 
have therapeutic potential in mitigating ar-
senic-related reproductive toxicity, although 
further research is needed to elucidate its 
mechanisms of action and clinical applica-
bility fully.
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