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WEAK LINEAL VARIATION OF THE NEUMANN 
BOUNDARY CONDITIONS IN A SUPERCONDUCTING 
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Abstract: Few theoretical studies of the thermodynamics properties in superconductors have been 
carried out in situations where the sample is in contact with an anisotropic material. Thus, the physical 
properties of the material in contact with the superconductor could vary in the sample surface. In this 
contribution are studying the superconducting properties of a Niobium prism with its lateral surfaces 
in contact with deferent kinds of metallic and/or superconducting materials. Numerically has been 
modelling an engineering boundary condition or anisotropic frontier via the deGennes penetration 
length b. The inverse of b vary linearly on the surfaces of the sample as γ=1-δ⁄b (δ is the size of the 
mesh grid). The second thermodynamic field increase when b<0 is considered and a slowly entry of the 
magnetic field is observed in the metallic regions of the boundary.
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VARIACIÓN LINEAL DÉBIL DE LA CONDICIÓN 
DE FRONTERA DE NEUMANN EN UNA PLACA 

SUPERCONDUCTORA

Resumen: Pocos estudios teóricos sobre propiedades termodinámicas en los superconductores se han 
llevado a cabo en situaciones en que la muestra está en contacto con un material aniso-trópico. Por 
lo tanto, las propiedades físicas del material en contacto con el superconductor podrían variar en la 
superficie de la muestra. En esta contribución, se estudian las propiedades superconductoras de un 
prisma de niobio con sus superficies laterales en contacto con diferentes tipos de metales y/o materiales 
superconductores. Numéricamente se ha modelado una condición de contorno de ingeniería o frontera 
aniso-trópico a través de la longitud de penetración deGennes b. El inverso de b varía linealmente sobre 
las superficies de la muestra como γ=1-δ⁄b (δ es el tamaño de la rejilla en la malla). El segundo campo 
termodinámico aumenta cuando se considera b<0 y una entrada lentamente del campo magnético se 
observa en las regiones metálicas de la frontera.
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1. INTRODUCTION

The study of the superconducting state at mesoscopic 
level is an important topic of investigation due to its 
technological potential applications, applications such 
as SQUID manufacturing [1], microwave circuits 
[2-4] among others. It is well know that the main 
difference of the magnetic behaviour of such materials 
between mesoscopic and macroscopic levels is that the 
geometry and size of the sample dramatically influence 
its magnetic response. In this type of sample, the 
competition among the surface currents, the external 
applied magnetic field and the defects of the crystal 
lattice become relevant, leading to fascinating new 
vortex structures. Multiple theoretical studies have been 
carried out with several geometries, such as cones [5], 
spheres [6], discs [7], prisms, solid of revolution [8]. 
At experimental level, the interplay charge/vortices in a 
superconducting coulomb-blockaded island was studied 
[9], D. Roditchev et al., observed Josephson vortex 
cores in a superconducting-insulating-superconducting 
heterostructure (S-I-S), he show a vortex Josephson 
generation by applying supercurrents through electrical 
means without magnetic field, which is a crucial 
step towards high-density on-chip integration of 
superconducting quantum devices [10], I. Lukyanchuk, 
et al. studied the Rayleigh instability of vortex 
droplets in superconductors, he found the dynamics 
of Abrikosov-Nielsen-Olesen vortices in systems with 
effects in quantum field theory by means of bench-top 
laboratory experiments [11]. In this paper, are analysed 
the effects of an anisotropic boundary condition on the 
vortex configurations and critical fields. In fact, this 
system has an experimental ground because it is based 
on the fact that substrates on which are deposited the 
superconducting samples are generally inhomogeneous, 
presenting different properties at the contact edge of the 
sample, which could affect their magnetic behaviour. 
In the following sections are showing some theoretical 
concepts necessary to put in context the reader, and 
finally presented some results and discuss them.

THEORETICAL FORMALISM

According to the Ginzburg-Landau formalism [12, 13, 14] 
the order parameter Ψ and de vector potential can be 
associated through equations 1 and 2. These equations are 
scaled as follows Ψ in units of (α⁄β)1⁄2, where α and β are 
two proper phenomenological parameters of the material, 
the distances are in units of coherence length ξ(0), time is 
in units of πℏ⁄(96KB Tc ), the vector potential A in units of 
Hc2 ξ and Gibbs free energy, G in units of (αTc )

2 ⁄ β.

                         (1) 

(2)

Boundary condition complement equations 1 and 2, 
where b=δ ⁄ (1-γ) is the deGennes parameter, δ is the 
mesh size and  is the unit normal vector to the surface 
[15].

(3)

                                          (4)

From equation 4, have γ(x=0)=γ1 e γ(x=L)=γ2 and γ2>γ1. 
b→∞, (γ=1) simulates vacuum/insulator superconducting 
boundary, δ>b>0 (0<γ<1) identifies a superconductor-
metal boundary, leading to a superconductivity is 
suppressed at the material edge. b<0, (γ>1) simulates 
a superconducting interface in contact with another 
superconductor at higher critical temperature. The method 
of linking variables was used for the discretization and 
solution of the Ginzburg-Landau equations (method ΨU) 
[16, 17]. All this condition imply that super-currents 
cannot flow out of the superconductor (Js=0).

RESULTS AND DISCUSSION

The Ginzburg-Landau equations for a square sample of 
lateral dimensions L=Lx=Ly=12ξ (0), were numerically 
solved taking the mesh size δ = ax = ay= 0.1. The order 
parameter and the vector potential were taken invariants on 
the z axis in which the external magnetic field H is applied, 
therefore, the demagnetization effects can be neglected in 
z axes [20]. The Ginzburg-Landau parameter κ = λ ⁄ξ is a 
typical value for Nb, T = 0 in all cases. For better analysis 
is used γ = 1-ax ⁄ b, which varies linearly through the 
boundaries parallels to the x axis. In this paper are taken 
two gradients, for gradient 1 ( 1), considering a purely 
superconductor-metal boundary, where the sample metallic 
character in contact with the superconductor varies as γ = 
0.75 at x = 0 to γ = 0.80 at x = Lx, so b is in the range 0.4 
≤ b ≤ 0.5, and similarly by considering the gradient 2 ( 2), 
taking into account that at some point of the sample material 
in contact with the superconductor is no longer a metal and 
becomes a superconductor at higher critical temperature, 
in other words b<0→b =0→b>0. In this case γ = 0.1 at 
x = 0 to γ = 1.1 at x = Lx, b is in the range -1.1 ≤ b ≤ 
9.0, which means that the boundary section at x=0 is in 
contact with a metal, while x=Lx is in contact with a higher 
Tc superconductor. On the other hand, lateral boundaries 
parallel to the y axis are in contact with vacuum, b→∞.
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Figure 1 shows the curves of the Gibbs free energy G for 
1 and 2 selected as a function of the applied magnetic 

field. Throughout of all magnetic field loop is satisfied the 
condition G( 2)  G( 1). This result clearly identifies that the 
Beam-Livingston surface energy decreases by considering a 
superconductor/metal surface [18, 19]. Transition fields Hp 
between different vortices states are different for H<0.4, and 
very similar for H>0.4 when the magnetic field decreases. 
Considering the two gradients, the magnetic field for the 
first vortex chain entry Hp1 occurs in Hp1=0.71.

Figure 1. Gibbs free energy for 1 and 2 as a function 
of the magnetic field.

The magnetization curves for the two gradients of γ are 
showed in Figure 2. It is observed that the two curves 
overlap to H 1.0, from this value the -4πM is grater for 

2 than for 1, which means that for H > 1.0 the energy 
barrier effect becomes noticeable and the diamagnetism 
of the sample decrease. Due to dG~-MdB, the difference 
in magnetization for the two gradients explains the 
discrepancy between G values found in Figure 1.

  

   

Figure 2. Magnetization curves for 1 and 1 for a loop 
of the magnetic field.

The vortex number and the order parameter as a 
function of the applied magnetic field for the two 
gradients is shown in Figure 3. It can be seen that 
(Hp1( 2)>Hp1 ( 1)) around the field loop. Increasing 
the magnetic field, the vortex transition occurs at 
1→3→5→7 to H=0.9 where transition L → L+1 
takes place. By decreasing H, sample vortices output 
occurs irregularly. At H=0 no vortex is trapped, 
inferring that the irregular surface does not act as a 
vortices anchor. Additionally, in the same figure is 
also shown |Ψ|2 for three different magnetic fields as 
evidenced that the vortices entry the sample through 
irregular boundary.

Figure 3. Vorticity and square modulus of the order 
parameter for 1 and 2 case as a function of the 
magnetic field.

Figure 4 shows the Cooper pairs density (|Ψ|2), its 
phase and the supercurrents for 5 different values of 
H. It can be observed that for 1 the area near the 
boundary parallel to the x axis where for low fields 
the superconductivity is suppressed because of metal 
presence. For H  1.0, a higher reduction of order 
parameter is shown in the middle area, in this case the 
small difference between the chosen values of γ does 
not affect conventional and well-known symmetry of 
the magnetic field entry.
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There is a clear difference between the region in which 
occurs the vortex penetration for 2 and 1. In 2 this 
region is not uniform across the boundary and gradually 
fades over it, while 2 is uniform. The superconducting/
superconducting at higher critical temperature Tc makes 
|Ψ|2 increases.

There is another difference between the two developed 
gradients, this occurs at H = 0.5, although in both cases 
there are three vortices, its topological configuration is 
different. This is explained because each configuration 
enables an energetically more favourable state for 
each gradient, and it is related to the presence of the 
Bean-Livingston energy barrier, since the vortices 
tend to enter areas where b > 0 (superconductivity 
reduction), the boundary condition superconduting-
higher Tc superconductor allows vortices inputs at 
higher magnetic fields than in a superconducting-metal 
boundary. it can be seen different vortex configurations 
in the studied cases.

CONCLUSIONS

In the presence of an applied magnetic field the time-
dependent Ginzburg Landau equations for a square 
sample are numerically solved. Two parallel faces 
of the of square are in vacuum contact while the 
other two are in inhomogeneous material contact. 
Two cases has been analysed, one with a variable 
metallic contact surface and another presenting a 
smoothly variation of a metal-ferromagnetic (b=0)-
superconducting contact surface. Both cases studied 
show that Hp1 ( 2) > Hp1 ( 1), therefore the bean 
Livingston is higher for 1, because this surface 
energy barrier is responsible for H values in which 
the vortices entry/exit the mesoscopic sample.

ACKNOWLEDGEMENTS

The author would like to thank professor Edson 
Sardella of the Department of Physics of the Estadual 
Paulista University, Bauru, Brazil, for his very useful 
discussions.

REFERENCES

[1] H. J. Brake, “SCENET roadmap for superconductor 
digital electronics”, Physica C, vol. 439, 2006, p. 1.

[2] V. Sokolovsky, L. Prigozhin, V. Dikovsky, “Meissner 
transport current in flat films of arbitrary shape and a 
magnetic trap for cold atoms”, Sci. Technol., vol. 23, 
2010, p. 065003.

[3] J. Pearl, “Current distribution in superconducting 
films carrying quantized fluxoid”, Appl. Phys. Lett., vol 
5, no 4, 1964, p. 65.

[4] E. Bustarret, “Superconductivity in doped 
semiconductors”, Physica C, vol. 514, 2015, p. 36.

[5] Y. Chen, M. M. Doria, F. M. Peeters, “Vortices in a 
mesoscopic cone: A superconducting tip in the presence of 
an applied field”, Phys. Rev. B, vol. 77, 2008, p. 054511.

[6] B. Xu, M. V. Milosevic, F. M. Peeters, “Magnetic 
properties of vortex states in spherical superconductors”, 
Phys. Rev. B, vol. 77, 2008, p. 144509.

[7] M. M. Doria, R. M. Romaguera, F. M. Peeters, 
“Effect of the boundary condition on the vortex patterns 
in mesoscopic three-dimensional superconductors: Disk 
and sphere”, Phys. Rev. B, vol. 75, 2007, p. 064505.

Figure 4. Super-electrons density |Ψ|2, phase ∆Φ, and super-current Js of both gradients for different 
magnetic fields values.



159
UNIVERSIDAD, CIENCIA y TECNOLOGÍA  Vol. 19, Nº 77,  Diciembre 2015ISSN 1316-4821

Barba-Ortega, J. et al., Weak Lineal Variation.

[8] A. Shitade and Y. Nagai, “Orbital angular momentum 
in a nonchiral topological superconductor”, Phys. Rev. 
B, vol. 92, 2015, p. 024502.

[9] I. M. Khaymovich, V. F. Maisi, J. P. Pekola, 
and A. S. Melnikov, “Charge-vortex interplay in a 
superconducting Coulomb-blockaded island”, Phys. 
Rev. B, vol 92, 2015, p 020501.

[10] D. Roditchev, C. Brun, L. Serrier, J. C. Cuevas, V. H. 
Loiola, M. V. Milosevic, F. Debontridder, V. Stolyarov 
and T. Cren, “Direct observation of Josephson vortex 
cores”, Nature Physics, vol.11, 2015, p. 332.

[11] I. Lukyanchuk, V. M. Vinokur, A. Rydh, R. Xie, 
M. V. Milosevic, U. Welp, M. Zach, Z. L. Xiao, G. W. 
Crabtree, S. J. Bending, F. M. Peeters and W. K. Kwok, 
“Rayleigh instability of confined vortex droplets in critical 
superconductors”, Nature Physics, vol. 11, 2015, p. 21.

[12] J. Barba-Ortega, E. Sardella, J. A. Aguiar, 
“Superconducting properties of a parallelepiped 
mesoscopic superconductor: A comparative study 
between the 2D and 3D Ginzburg–Landau models”, 
Phys. Lett. A., vol. 379, no. 7, 2015, p. 732.

[13] J. Barba-Ortega, E. Sardella, J. A. Aguiar, 
“Superconducting boundary conditions for mesoscopic 
circular samples”, Supercond. Sci. Technol., vol. 24, 
2011, p. 015001.

[14] M.V. Milosevic, “The Ginzburg-Landau theory in 
application”, Physica C, vol. 470, 2010, p. 791.

[15] P. G. de Gennes, “Superconductivity of Metals 
and Alloys”, New York: Addison-Wesley, 1994, p. 
274.

[16] A. C. Bolech, G. C. Buscaglia, A. Lopez, 
“Connectivity and Superconductivity”, ed. J. Berger, J. 
Rubinstein, Berlin: Springer-Verlag, 2000.

[17] D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, 
M. Palumbo, V. M. Vinokur, “Numerical simulation 
of vortex dynamics in type-II superconductors”, J. 
Comput. Phys., vol. 123, 1996, p. 254.

[18] C. P. Bean and J. D. Livingston, “Surface Barrier 
in Type-II Superconductors”, Phys. Rev. Lett., vol 12, 
1964, p. 14.

[19] C. C. de Souza Silva, J. A. Aguiar, “Irreversible 
matching effects in homogeneous and layered 
superconducting films”, Physica C, vol. 354, 2001, 
p. 232.

[20] F. Rogeri, R. Zadorosny, P. N. Lisboa-Filho, 
E. Sardella and W. A. Ortiz, “Magnetic field profile 
of a mesoscopic SQUID-shaped superconducting 
film”, Supercond. Sci. Technol., vol 26, 2013, p. 
075005.


