Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Similares en SciELO
Compartir
Archivos Latinoamericanos de Nutrición
versión impresa ISSN 0004-0622versión On-line ISSN 2309-5806
Resumen
BRESSANI, Ricardo; TURCIOS, Juan C; REYES, Luis y MERIDA, Roberta. Caracterización física y química de harinas industriales nixtamalizadas de maíz de consumo humano en América Central. ALAN [online]. 2001, vol.51, n.3, pp.309-313. ISSN 0004-0622.
Physical and chemical characteristics of industrial nixtamalized maize flour for human consumption in Central America. The objective of this study was the characterization of industrial nixtamalized maize flour for human consumption and which are marketed in Central America for some selected physical and chemical properties which may contribute to food composition information and help nutrition and micronutrient fortification programs. A total of 12 brands purchased in triplicate were obtained from supermarkets in Guatemala, El Salvador and Honduras. These samples were kept under refrigeration until analyzed. The physical parameters measured and results were the following: particle size with most samples having a high percentage of particles greater than 60 mesh, pH (5.4-7.5), water absorption index (WAI) (3.4-4.0 g gel/g sample), water soluble index (WSI) (4.8-7.8 g/100g) and flour density (0.410-0.547 g/ml). The differences were statistically significant for all parameters measured, except for WAI. The chemical characteristics included, moisture, protein, fat, ash and dietetic fiber. Differences between flour samples were statistically significant except for fat content. Protein content was low, ranging between 6.7-8.1 g/100g and total dietary fiber varied between 7.7-12.0 g/100g. The samples were analyzed for phytic acid with a variation from 632 to 903 mg/100 g, with statistical significant differences. The samples were also analyzed for total and soluble (pH 7.5) iron, phosphorus, calcium, potassium, zinc, copper, manganese, and magnesium. The difference in the iron and calcium content between flour samples were statistically significant.The physical and chemical variability found between flour samples of nixtamalized maize was relatively high and it is recommended to establish quality standards through raw material and process standardization for greater effectiveness of nutrition programs and activities on micronutrient fortification which may be pursued in the future.
Palabras clave : Nixtamalized maize flours; industrial nixtamalization physical and chemical characteristics; nixtamalized maize for human consumption..