Services on Demand
Journal
Article
Indicators
Cited by SciELO
Access statistics
Related links
Similars in SciELO
Share
Revista Latinoamericana de Metalurgia y Materiales
Print version ISSN 0255-6952
Abstract
MENDEZ, Luis Miguel and OLAYA, Jhon Jairo. Approaching of Taguchi method to study chromium oxide coating applied by flame thermal spray. Rev. LatinAm. Metal. Mater. [online]. 2015, vol.35, n.2, pp.201-212. ISSN 0255-6952.
In this article, Taguchi design of experiments L9 orthogonal array with three replica R1, R2 and R3, have been used to define the parameter combination that can be used to produce chromium oxide coatings and evaluate which parameter selection was the better to obtain low coefficient of friction and low corrosion current, with the purpose to use this parameters to produce coatings useful to recovery of naval pieces. Process parameters selected for these studies are: gases process pressure: oxygen, acetylene and air, all of them with three level (low, medium and high levels). The response parameters of flame thermal spray coating produced are coefficient of friction (COF) and corrosion current (ICORR). The analyses of the raw data and Signal-to-Noise (S/N) ratio of the response parameters have been performed using analysis of variance (ANOVA). Experimental minimum results are: E3 experiment with CDF value of 0,03613 and E7 experiment with ICORR value of 4,10E-6 A. The optimal process parameters are predicted on the basis of analyses of S/N ratio recommended by Taguchi method, with this obtain that a combination of parameters: 3,65 Bar pressure of oxygen, 0,83 Bar pressure of acetylene and 7 psi pressure of air, produce the lower coefficient of friction (COF) and 3,65 Bar pressure of oxygen, 0,55 Bar pressure of acetylene and 15 psi pressure of air, produce the lower corrosion current (ICORR). The significant process parameter is the acetylene pressure.
Keywords : Thermal Spray; Chromium oxide; Robust Design; Taguchi Method; Corrosion; Friction coefficient.