SciELO - Scientific Electronic Library Online

 
vol.27 número4Evaluación del concreto con bajas relaciones agua/cemento y agregados calizos de alta absorciónDiseño y desarrollo de un módulo de recolección, almacenamiento y transmisión de datos a través de la red celular para contadores electrónicos monofásicos de energía eléctrica índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista de la Facultad de Ingeniería Universidad Central de Venezuela

versión impresa ISSN 0798-4065

Resumen

ANNICCHIARICO, William. Multidisciplinary - multiobjective structural design optimization by using dynamical particle swarm algorithm. Rev. Fac. Ing. UCV [online]. 2012, vol.27, n.4, pp.51-64. ISSN 0798-4065.

The actual design of structures has to be seen not only as the result of a single discipline such as structural engineering, but the result of the interaction among concurrent disciplines which take advantage of available resources and obtain designs that are as safe as possible and also environmentally friendlier. In accordance with these ideas, in this work is presented and discussed a methodology to the multiobjective - multidisciplinary structural design of buildings based on an improved particle swarm optimization algorithm, which has proved to be more efficient and robust in nonlinear problems and when the optimization objectives are conflicted. In particular a structural earthquake resistance optimum design is carry out in conjunction with the optimum design of the active control system of the dynamical properties of the structure. A novel integrated optimization system was developed to solve this problem which is able to control and even improve the behavior of the structure under seismic excitations. In order to demonstrate the effectiveness of the proposed methodology, a structural model of a 3 story building is optimized under different objective cases, concluding that the integrated multiobjective/multidisciplinary optimization case is the most convenient and resource effective compared with those obtained for each discipline applied by it

Palabras clave : Particle swarm Optimization; Multidisciplinary-Multiobjective structural/control optimization; Evolutionary Computation algorithms.

        · resumen en Español     · texto en Español