Saber
versão impressa ISSN 1315-0162
Saber vol.26 no.3 Cumaná set. 2014
Predicción de los contenidos de agua y sal durante el salado de bagre usando diferentes mezclas salinas
Prediction of moisture and salt contents of catfish slices during salting using different salting mixtures
Otoniel Corzo1, Nelson Bracho2, Jaime Rodríguez3
Universidad de Oriente, Núcleo de Nueva Esparta, Venezuela
1 Departamento de Tecnología de Alimentos,
2 Programa de Estadística, Guatamare, Isla de Margarita, Venezuela,
3 Universidad Nacional Experimental Francisco de Miranda, Programa de Ingeniería Pesquera, Punto Fijo, Venezuela. E-mail: otocorzo@cantv.net
RESUMEN
El objetivo de este trabajo fue determinar la aplicabilidad del modelo de Weibull para predecir los contenidos de humedad y sal y sus coeficientes de difusión, durante el salado de trozos de bagre utilizando mezclas de NaCl, KCl, CaCl2 y MgCl2. Los coeficientes efectivos de difusión (De) de agua y sal fueron determinados usando el modelo normalizado de Weibull. Los altos valores de los coeficientes de determinación (R2 > 0,99) y los bajos errores relativos medios (MRE < 10%) sugieren que el modelo de Weibull es adecuado y preciso para predecir los contenidos de humedad y sal y determinar De. Los valores del parámetro de escala del modelo de Weibull para la cantidad fraccional de los contenidos de humedad y sal variaron entre 0,665 y 0,761 d y entre 0,64 y 0,887 d, respectivamente; mientras que los del parámetro de forma variaron entre 0,467 y 0,669 y entre 0,511 y 1,218, respectivamente. Los valores de De para agua variaron entre 1,13 x 10-10 y 1,81 x 10-10 m2/s, mientras que los de sal variaron entre 0,63 x 10-10 y 1,80 x 10-10 m2/s.
Palabras clave: Pseudoplatystoma, modelo normalizado de Weibull, salado en pila, coeficiente de difusión.
ABSTRACT
The objective of this study was to determine the applicability of the Weibull model to predict the moisture and salt contents and their diffusion coefficients, during the salting of catfish slices using mixtures of NaCl, KCl, CaCl2 and MgCl2. The effective water and salt diffusion coefficients (De) were determined using the normalized Weibull model. The high coefficients of determination (R2 > 0.99) and low mean relative error (MRE< 10%) suggest that Weibull model is suitable and accurate for predicting both moisture and salt contents and determining De. Values of the scale parameter of Weibull model for fractional amount of moisture and salt contents ranged from 0.665 to 0.761 d and from 0.640 to 0.887 d, respectively; while values of shape parameter ranged from 0.467 to 0.669 and from 0.511 to 1.218, respectively. Values of De for water ranged approximately from 1.13 x 10-10 to 1.81 x 10-10 m2/s while values for salt ranged from 0.63 x 10-10 to 1.80 x 10-10 m2/s.
Key words: Pseudoplatystoma, normalized Weibull model, salting pile, diffusion coefficient.
Recibido: febrero 2014. Aprobado: marzo 2014. Versión final: mayo 2014.
INTRODUCCIÓN
El salado en pila consiste en colocar el alimento entre capas alternas de sal seca, permitiendo así la ganancia de sal y pérdida de agua además de algunos componentes solubles y proteínas presentes (Thorarinsdottir et al. 2004). Durante el proceso, las cantidades de sal y agua cambian hasta alcanzar un estado de equilibrio. Muchas ecuaciones matemáticas teóricas, empíricas y semi-empíricas se han empleado para modelar las relaciones entre los resultados experimentales de un proceso y las leyes físicas y el comportamiento de la absorción de agua de los alimentos durante el procesamiento. La ley de difusión de Fick, basada en la aproximación de la difusión relativa, se ha empleado para describir los procesos de difusión del agua, sin embargo los modelos empíricos son los más usados debido a su simplicidad matemática y utilidad (Schmidt et al. 2009). El modelo probabilístico de Weibull se ha usado en múltiples procesos para describir los diferentes cambios que ocurren en la deshidratación osmótica (Deng y Zhao 2008), rehidratación (Marquas et al. 2009, Wallach et al. 2011, Muñoz et al. 2012), hidratación (Khazaei y Mohammadi 2009), almacenamiento (Palazón et al. 2009, Aguiló-Aguayo et al. 2010, Rawson et al. 2012) y degradación de parámetros de calidad (Kong et al. 2007, Oliveira et al. 2012). El análisis del fenómeno de transferencia de masa se basa en la suposición de que el coeficiente de difusión representa a todos los parámetros influyentes en la rapidez del proceso, y en este sentido se normalizó el modelo de Weibull (Marabi et al. 2003, Corzo et al. 2008, 2010). La sal (NaCl) es un ingrediente esencial en el salado, sin embargo ingerirla en exceso se le relaciona con la hipertensión. Una aproximación para reducir el contenido de sodio en los alimentos es reemplazar total o parcialmente el NaCl con otras sales como el KCl, CaCl2 y MgCl2 (Ruusunen y Puolanne 2005, Blesa et al. 2008, Aliño et al. 2009, Corzo et al. 2012). Dada la importancia desde el punto de vista ingenieril que tiene el conocimiento de los cambios que ocurren en el salado y los coeficientes de difusión, los objetivos de este trabajo fueron determinar la aplicabilidad del modelo de Weibull en la predicción de los contenidos de agua y sal y en la determinación de los coeficientes de difusión de agua y sal, durante el salado en pila de trozos de bagre utilizando diferentes mezclas salinas.
MATERIALES Y MÉTODOS
Preparación de las muestras
El bagre (Pseudoplatystoma sp.) fue comprado en las pesquerías situadas en Villa Marina, estado Falcón, Venezuela. Los especímenes de bagre fueron descabezados, eviscerados, lavados y fileteados manualmente con cuchillos de acero inoxidable, y luego cortados en trozos (n = 438) de longitud promedio de 4,0 x10-2 m, ancho promedio de 4,0 x10-2 m y espesor promedio de 1,0 x 10-2 m, usando un molde de metal. La masa promedio de cada trozo (0,0236 kg) se determinó en una balanza Sartorius, AZ3102 Sartorius Mechatronics, EUA. En seis trozos se determinó el contenido de agua (0,807 ± 0,013 g agua/g) según la norma venezolana COVENIN 1997: 1120-97, el contenido de sal (0,00391 ± 0,00007 g NaCl/g) siguiendo la norma venezolana COVENIN 2002: 1223-02, pH (6,23 ± 0,02) aplicando la norma venezolana COVENIN 1979: 11315-79, cenizas (0,0124 ± 0,005 g/g), según la norma venezolana COVENIN 1999: 1220-99, y la actividad de agua (Aw = 0,997 ± 0,03) utilizando un medidor de actividad de agua Aqualab, CX3 Decagon Devices, Inc. Pullman, WA. EUA.
Salado en pila
Se formaron al azar, seis grupos experimentales contentivos de 36 trozos cada uno, previamente pesados, y se salaron en pila utilizando diferentes mezclas de NaCl, KCl, CaCl2 y MgCl2 (Tabla 1). Cada grupo experimental se introdujo en un recipiente de plástico con drenaje, colocando una capa de sal en el fondo, dos capas de tres trozos cada una con una de mezcla de salado entre ellas y otra sobre la capa superior, obteniendo así tres capas de sal y dos de carne, en una proporción en masa 0,85:1 (mezcla salina:carne). Cada día durante seis días, se removieron seis trozos, tres de cada capa, se eliminó el exceso de mezcla y se determinó, en cada uno de ellos, el contenido de humedad según la norma COVENIN 1997: 1120-97 y el contenido de sal aplicando la norma COVENIN 2002: 1223-02. Cada proceso de salado con una determinada mezcla, fue realizado por duplicado.
Modelo de Weibull
El modelo de Weibull describe el comportamiento de sistemas o eventos que tienen algún grado de variabilidad (Cunha et al. 1998, 2001), tal como ocurre durante el salado en pila.
La fracción del contenido de humedad (
nw) durante el salado se puede expresar como (Cunha et al. 1998):donde Xwo, Xw a nd Xwe son los contenidos de humedad inicial, a un tiempo t, y en equilibrio (kg agua/kg de materia seca) respectivamente, αw (d) es el parámetro de escala del modelo, βw (adimensional) es el parámetro de forma, y t (d) es el tiempo de salado.
Igualmente, la fracción del contenido de sal se puede expresar como:
donde
Xso, Xs y Xse son los contenidos de sal inicial, a un tiempo t, y en equilibrio (g NaCl/g ms) respectivamente, αs (d) es el parámetro de escala del modelo, βs (adimensional) es el parámetro de forma, y t es el tiempo de salado.Modelo normalizado de Weibull
El modelo de Weibull fue modificado (Marabi et al. 2003, 2004, Corzo y Bracho 2009) normalizando el parámetro de escala con las tres dimensiones características de longitud (2a), ancho (2b) y espesor (2c), considerando así el coeficiente de difusión.
donde Dw es el coeficiente de difusión de agua, βw es el parámetro de escala y t es el tiempo de difusión o salado.
Para el contenido de humedad se tiene:
donde Ds es el coeficiente de difusión de sal, βs es el parámetro de forma y t es el tiempo de salado.
El coeficiente de difusión efectivo (Dwe o Dse) se puede calcular por la expresión (Marabi et al. 2003, Corzo y Bracho 2009):
donde
Rgw y Rgs son los factores geométricos y Dw and Ds son los valores determinados usando las ecuaciones 5 y 6.La determinación del valor adecuado de
Rg se logró utilizando el modelo de difusión de Fick para simular las condiciones existentes en el proceso teórico y como base para la comparación. Para ello se tomó en cuenta que: el bagre tiene la forma geométrica de un paralelepípedo rectángulo de longitud 2a, ancho 2b y espesor 2c; la transferencia de agua es tridimensional; el contenido de agua inicial está distribuida uniformemente a través del alimento; el encogimiento es despreciable; y el coeficiente de difusión es homogéneo y constante durante el salado.Con base en las consideraciones anteriores, la ecuación que define el modelo de difusión se puede escribir como (Crank 1975):
donde
Xo, Xt y Xe son el contenido de humedad o sal inicial, a un tiempo dado t, y en equilibrio (kg/kg ms) respectivamente, De (m2/s) es el coeficiente de difusión de agua o sal y t (s) es el tiempo de salado.La data de contenidos de humedad y sal, a las diferentes condiciones de salado, se derivaron de la simulación utilizando los primeros cuatro términos de la solución analítica del modelo de Fick. El rango de valores de
De se tomó entre 10-9 y 10-12 m2/s (valor teórico de De) correspondiente a los valores esperados en sistemas alimenticios. Luego, el modelo normalizado de Weibull (Ecs. 3 y 4) se ajustó a la data obtenida de la simulación y se determinaron Dw y Ds. Finalmente, el valor de Rg para la humedad y sal se calculó mediante las Ecs. 5 y 6.Análisis estadístico
La evaluación estadística de los resultados se realizó considerando un diseño experimental 6x6 (seis mezclas y seis tiempos). El ajuste del modelo de Weibull a los datos experimentales se realizó por el método de Levenberg- Marquandt (Bates y Watts 1988). Para determinar los coeficientes del modelo se utilizó un procedimiento iterativo que encontrara la mínima diferencia al cuadrado asintótica, entre el valor inicial y el estimado. Los efectos significativos (p < 0,05) de la mezcla y el tiempo sobre los parámetros del modelo y el coeficiente de difusión, se estimaron aplicando un análisis de varianza (ANOVA) y una prueba de comparación múltiple según el método de las mínimas diferencias al cuadrado (LSD) con un 95% de nivel de confianza. Todos los análisis se efectuaron utilizando el paquete estadístico SPSS 10.0 SPSS Inc., Chicago, IL. USA).
Para evaluar la bondad de ajuste del modelo se utilizó el coeficiente de determinación (R
2), y para la capacidad de predicción se usó la validación cruzada y el error relativo medio (MRE) expresado como:
donde
Yei es el valor experimental, Ypi es el valor predicho por el modelo y N es el número de datos experimentales. Se consideró aceptable el modelo, si los valores de MRE estaban por debajo de 10% (Krokida y Marions-Kouris 2003).RESULTADOS Y DISCUSIÓN
Variación de los contenidos de humedad y sal durante el salado
En las figuras 1 y 2 se presentan los contenidos de humedad (X
w) y sal (Xs) en los trozos de bagre durante el salado con las diferentes mezclas. Se puede observar una disminución pronunciada de Xw y un aumento igualmente pronunciado de Xs durante el primer día, para luego tender lentamente al equilibrio. Los valores de Xw y sal Xs, al sexto día, variaron (p < 0,05) entre 0,412 g agua/g ms (usando 45% NaCl, 25% KCl, 20% CaCl2 y 10% MgCl2) y 0,785 g agua/g ms (usando 100% NaCl) y de 0,265 g NaCl/g ms (usando 100% NaCl) a 0,300 g NaCl/g ms (usando 45% NaCl, 25% KCl, 20% CaCl2 y 10% MgCl2), respectivamente. Esos resultados indican que Xw y Xs pueden depender, en alguna extensión, de la composición de la mezcla de salado usada, y por eso parece claro que el menor grado de deshidratación obtenido en las condiciones de salado utilizadas, está relacionado directamente con la baja penetración de sal en el músculo. Altas concentraciones de sal y una pronunciada disminución del contenido de humedad en la superficie de filetes de sardina salados (Boudhrioua et al. 2009). Este comportamiento fue explicado por la interacción proteína-sal que causa la desnaturalización de las proteínas dado que las proteínas miofibrilares pierden agua rápidamente generando cambios en la textura y capacidad de retención de agua (Gallart-Jornet et al. 2007). El reemplazo del sodio por potasio, calcio y magnesio podrían afectar la transferencia de masa en el salado, aumentando la tasa de pérdida de agua y disminuyendo la de ganancia de sal. Similares resultados fueron observados en el salado de carne molida de cerdo (Comaposada et al. 2007), y en lonjas de cerdo saladas (Aliño et al. 2009).Ajuste de modelo de Weibull
Los resultados del ajuste del modelo a los datos, usando la regresión no lineal, se muestran en las tablas 2 y 3. Los valores de los coeficientes de determinación son mayores que 0,99 y los de MRE son menores del 10%, indicando así, buenos ajustes en las diferentes condiciones de salado. Los análisis de residuales mostraron: 1) líneas rectas en los gráficos de la probabilidad normal, por lo cual es razonable asumir que los errores observados tenían una distribución normal; 2) los residuales estandarizados variaron al azar alrededor de cero sin tendencias o formas en los gráficos del error estandarizados contra el valor ajustado, por lo tanto las condiciones de homocedasticidad y error medio igual a cero fueron cumplidas. Esto sugiere que los modelos de Weibull (Ecs. 1 y 2) son adecuados y precisos para explicar y predecir los contenidos de humedad y sal en los trozos de bagre durante el salado usando las diferentes mezclas salinas. Similares resultados fueron observados para describir la cinética de rehidratación (Marabi et al. 2003, García-Pascual et al. 2006, Marquas et al. 2009, Wallach et al. 2011, Muñoz et al. 2012), deshidratación osmótica (Cunha et al. 2001, Corzo y Bracho 2009), y secado por convección (Corzo et al. 2008, 2010).
Parámetros del modelo de Weibull para el contenido de humedad
Los valores de los parámetros de escala (α
w) y de forma (βw) del modelo de Weibull para el contenido de humedad (Ec.1) usando diferentes mezclas, se presentan en la Tabla 2. Los valores de βw variaron entre 0,467 y 0,669 y los de αw lo hicieron entre 0,665 y 0,761 d. Valores de βw menores que 1, están relacionados con una disminución de la función de distribución de Weibull. Los valores obtenidos están dentro el rango de los reportados para la deshidratación de alimentos (Kaya y Aydin 2008, Vega- Gálvez et al. 2008, Markowski et al. 2010) y salado de carne de cerdo (Graiver et al. 2006). El ANOVA de la variación de los parámetros mostró que tanto αw como βw estaban afectados por la composición de las mezclas. El mayor valor de αw fue encontrado para el salado utilizando una m ezcla d e 6 5% N aCl y 3 5% K Cl (mezcla 2). En general, αw disminuyó (p < 0,05) al aumentar el reemplazo parcial de NaCl con KCl, CaCl2 y MgCl2 (mezclas 1, 2, 3, 4 y 5). Los efectos de la composición en las mezclas de NaCl y KCl (mezclas 1, 2 y 3) sobre αw fue mezclado. El recíproco de αw en el modelo de Weibull puede compararse con el coeficiente de difusión del modelo de Fick, dado que los dos parámetros son las constantes cinéticas de cada modelo (García-Pascual et al. 2006).El parámetro de forma disminuyó (p < 0 ,05) a l aumentar el reemplazo parcial de NaCl con KCl, CaCl
2 y MgCl2 (mezclas 1, 2, 3, 4 y 5). El valor más bajo se encontró para el salado con la mezcla de 65% NaCl y 35% KCl (mezcla 2). Se observó una disminución (p < 0,05 en βw cuando se agregó CaCl2 y MgCl2 a la mezcla que contiene 25% KCl y diferentes porcentajes de NaCl (mezclas 4 y 5), y cuando se incrementó el contenido de éstas sales en las mezclas. El parámetro está relacionado con la velocidad de transferencia de masa al principio del proceso, por ejemplo, a menor valor de βw más rápida es la tasa de pérdida de agua. Los valores de β encontrados son del mismo orden de magnitud que los reportados en la rehidratación de hongos (Garcia-Pascual et al. 2005) y Morel (García-Pascual et al. 2006).Parámetros del modelo de Weibull para el contenido de sal
Los valores de α
s y βs para el contenido de sal (Ec. 2) para el salado con diferentes mezclas se presentan en la Tabla 3. Se encontró que los valores de βs variaron entre 0,511 y 1,218 y los de αs entre 0,640 y 0,887 d. El parámetro de escala disminuyó (p < 0,05) cuando se incrementa el reemplazo parcial de NaCl con KCl, CaCl2 y MgCl2 (mezclas 1, 2, 3, 4 y 5), sin embargo, el efecto es mezclado cuando se aumenta el reemplazo de NaCl con KCl (mezclas 1, 2 y 3). Se encontró un incremento (p < 0,05) en βs al aumentar el contenido de KCl en las mezclas de NaCl y KCl (mezclas 1, 2 y 3) y al reemplazar NaCl con CaCl2 y MgCl2 (mezclas 4 y 5) comparado con el βs de la mezcla de 25% KCl y 75% NaCl (mezcla 1), pero no hay efectos (p > 0,05) de la composición en las mezclas de NaCl, KCl, CaCl2 y MgCl2 (mezclas 4 y 5) sobre βs.Coeficientes de difusión
Los valores altos de R
2 (> 0,996), bajos de MRE (Tablas 4 y 5) y ningún patrón evidente en el comportamiento de los residuales a través del coeficiente de difusión, indican que el modelo normalizado de Weibull (Ecs. 3 y 4) es adecuado para determinar Dwe y Dse . Los valores de Dwe y Dse fueron calculados usando un valor de Rg igual a 3,47. Los valores de Dwe variaron entre 1,13 x 10-10 y 1,81 x 10-10 m2/s (Tabla 4). El ANOVA mostró que Dwe aumentó (p < 0,05) al reemplazar NaCl con KCl (mezclas 1, 2 y 3) y con CaCl2 y MgCl2 en las mezcla que contiene 25% KCl (mezclas 5 y 6). Los efectos de la composición sobre Dwe en las mezclas de NaCl y KCl son combinados. Los valores de Dse variaron entre 0,63 x 10-10 y 1,80 x 10-10 m2/s (Tabla 5). El valor de Dse aumentó (p < 0,05) al reemplazar NaCl con KCl (mezclas 1, 2 y 3) y con CaCl2 y MgCl2 (mezclas 4 y 5) pero los efectos de la composición son mezclados. En general, los valores de Dwe son mayores (p < 0,05) que los de Dse, lo cual indica que para un mismo tiempo de salado, los cambios en el contenido de humedad son mayores que los del contenido de sal probablemente debido a que los iones Cl-, Na+, K+, Ca2+ y Mg2+ tienen mayor resistencia al transporte que el agua (Gou y Comaposada 2000, Gou et al. 2003). Similares resultados fueron encontrados en la rehidratación de partículas de alimentos (Marabi et al. 2004), secado de coroba (Corzo et al. 2008), secado de mango (Corzo et al. 2010) y deshidratación osmótica de sardina (Corzo y Bracho 2009).CONCLUSIONES
El modelo de Weibull es adecuado y preciso para predecir los contenidos de humedad y sal durante el salado de trozos de bagre usando diferentes mezclas de NaCl, KCl, CaCl2 y MgCl2. En general el parámetro de escala del modelo de Weibull para el contenido de humedad disminuyó al aumentar el reemplazo parcial de NaCl con KCl, CaCl2 y MgCl2 en las mezclas de salado, mientras que para el contenido de sal aumentó. El modelo normalizado de Weibull permitió determinar los coeficientes de difusión de agua y sal en los trozos de bagre durante el salado. Los coeficientes de difusión aumentaron con el reemplazo parcial de NaCl con KCl, CaCl2 y MgCl2.
REFERENCIAS BIBLIOGRÁFICAS
1. Aguiló-Aguayo I, Montero-Calderón M, Soliva-Fortuny R, Martín-Belloso O. 2010. Changes on flavor compounds throughout cold storage of watermelon juice processed by high-intensity pulsed electric fields or heat. J. Food Eng. 100(1):43-49. [ Links ] 2. A 3. B 4. B
5. Boudhrioua N, Djendoubi S, Bellagha S, Kechaou N. 2009. Study of moisture and salt transfers during salting of sardine fillets. J. Food Eng. 94(1):83-89.
6. Comaposada J, Arnau J, Gou P. 2007. Sorption isotherms of salted minced pork and of lean surface of dry-cured hams at the end of the resting period using KCl as substitute for NaCl. Meat Sci. 77(4):643- 648.
7. Corzo O, Bracho N. 2009. Aplicación del modelo de Weibull normalizado en la deshidratación osmótica de láminas de sardina. Rev. Cientif. FCV-LUZ. 19(4):400-407.
8. Corzo O, Bracho N, Pereira A, Vásquez A. 2008. Weibull distribution for modeling air drying of coroba slices. LWT-Food Sci. Technol. 41(10):2023-2028.
9. Corzo O, Bracho N, Álvarez C. 2010. Weibull model for thin-layer drying of mango slices at different maturity stages. J. Food Process. Preserv. 34(6):993-1008.
10. Corzo O, Bracho N, González VC. 2012. Efectos del reemplazo parcial de cloruro de sodio sobre la transferencia de masa en el salado en pila de láminas de carne caprina. Rev. Cientif. FCV-LUZ. 22(1):59-64.
11. COVENIN (Comisión Venezolana de Normas Industriales). 1979. Norma Venezolana COVENIN: 11315-79. Alimentos. Determinación del pH. (Acidez iónica).
12. COVENIN (Comisión Venezolana de Normas Industriales). 1997. Norma Venezolana COVENIN: 1120-97. Carne y productos cárnicos. Determinación de humedad. (Segunda revisión).
13. COVENIN (Comisión Venezolana de Normas Industriales). 1999. Norma Venezolana COVENIN: 1220-99. Alimentos: Determinación de Cenizas.
14. COVENIN (Comisión Venezolana de Normas Industriales). 2002. Norma Venezolana COVENIN: 1223-02. Alimentos: Determinación de sal.
15. Crank J. 1975. The mathematics of diffusion. (2nd ed.). Clarendon Press, Oxford, EUA, pp 44-68.
16. Cunha LM, Oliveira FA, Oliveira JC. 1998. Optimal experimental design for estimating the kinetic parameters of process described by the Weibull probability distribution function. J. Food Eng. 37(2):175-191.
17. Cunha LM, Oliveira FA, Aboim AP, Frías JM. 2001. Stochastic approach to the modelling of water losses during osmotic dehydration and improved parameter estimation. Int. J. Food Sci. Technol. 36(3):253-262.
18. Deng Y, Zhao Y. 2008. Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). J. Food Eng. 85(1):84-93.
19. Gallart-Jornet L, Barat JM, Rustad T, Erikson U, Escriche I, Fito P. 2007. A comparative study of brine salting of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar). J. Food Eng. 79(1):261-270.
20. García-Pascual P, Sanjuán N, Melis R, Mulet A. 2006. Morchella esculenta (morel) rehydration process modeling. J. Food Eng. 72(4):346-353.
21. Gou P, Comaposada J. 2000. La transferencia de sal en el interior del jamón curado. Eurocarne. 86:36-44.
22. Gou P, Comaposada J, Arnau J. 2003. NaCl content and temperature effects on moisture diffusivity in the Gluteus medius muscle of pork ham. Meat Sci. 63(1):29-34.
23. Graiver N, Pinotti A, Califano A, Zaritzky N. 2006. Diffusion of sodium chloride in pork tissue. J. Food Eng. 77(4):910-918.
24. Kaya A, Aydin O. 2008. Experimental investigation of drying kinetics of cherry laurel. J. Food Proc. Eng. 31(3):398-412.
25. Khazaei J, Mohammadi N. 2009. Effect of temperature on hydration kinetics of sesame seeds (Sesamum indicum L.). J. Food Eng. 91(4):542-552.
26. Kong F, Tang J, RascoB. 2007. Kinetics of salmon quality changes during thermal processing. J. Food Eng. 83(4):510-520.
27. Krokida MK, Marinos-Kouris D. 2003. Rehydration kinetics of dehydrated products. J. Food Eng. 57(1):1-7.
28. Marabi A, Livings S, Jacobson M, Saguy IS. 2003. Normalized Weibull distribution for modeling rehydration of food particulates. Eur. Food Res. Technol. 217(4):311-318.
29. Marabi A, Jacobson M, Livings S, Saguy IS. 2004. Effect of mixing and viscosity on rehydration of dry food particulates. Eur. Food Res.Technol. 218(4):339-344.
30. Markowski M, Białobrzewski I, Modrzewska A. 2010. Kinetics of spouted-bed drying of barley: Diffusivities for sphere and ellipsoid. J. Food Eng. 96(3):380-387.
31. Marquas LG, Prado MM, Freire JT. 2009. Rehydration characteristics of freeze dried tropical fruits. LWT-Food Sci. Technol. 42(7):1232-1237.
32. Muñoz N, Garcia-Gil J, Arnau J, Gou P. 2012. Rehydration kinetics at 5 and 15ºC of dry salted meat. J. Food Eng. 110(3):465-471.
33. Oliveira F, Sousa-Gallagher MJ, Mahajan PB, Teixeira JA. 2012. Development of shelf-life kinetic model for modified atmosphere packaging of fresh sliced mushrooms. J. Food Eng. 111(2):466-473.
34. Palazón MA, Pérez-Conesa D, Abellán P, Ros G, Romero F, Vidal ML. 2009. Determination of shelf-life of homogenized apple-based beikost storage at different temperatures using Weibull hazard model. LWT-Food Sci. Technol. 42(1):319- 326.
35. Rawson A, Tiwari BK, Tuohy M, Brunton N. 2012. Impact of frozen storage on polyacetylene content, texture and colour in carrots disks. J. Food Eng. 108(4):563-569.
36. Ruusunen M, Puolanne E. 2005. Reducing sodium intake from meat products. Meat Sci. 70(3):531- 541.
37. Schmidt FC, Carciofi BA, Laurindo JB. 2009. Application of diffusive and empirical models to hydration, dehydration and salt gain during osmotic treatment of chicken breast cuts. J. Food Eng. 91(4):553-559.
38. Thorarinsdottir KA, Arason S, Bogason S, Kristbergsson K. 2004. The effects of various salt concentrations during brine curing of cod. Int. J. Food Sci. Technol. 39(1):79-89.
39. Vega-Gálvez A, Lemus-Mondaca R, Bilbao-Sáinz C, Yagnam F, Rojas A. 2008. Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): mathematical modeling and evaluation of kinetic parameters. J. Food Proc. Eng. 31(1):120-137.
40. Wallach R, Troygot O, Saguy IS. 2011. Modeling rehydration of porous food materials: II. The dual porosity approach. J. Food Eng. 105(3):416-421.